目标

学会:

  • 访问像素值并修改它们
  • 访问图像属性
  • 设置感兴趣区域(ROI)
  • 分割和合并图像

本节中的几乎所有操作都主要与Numpy相关,而不是与OpenCV相关。要使用OpenCV编写更好的优化代码,需要Numpy的丰富知识。

(由于大多数示例都是单行代码,因此示例将在Python终端中显示)

访问和修改像素值

让我们先加载彩色图像:

>>> import numpy as np
>>> import cv2 as cv
>>> img = cv.imread('messi5.jpg')

你可以通过行和列坐标来访问像素值。对于 BGR 图像,它返回一个由蓝色、绿色和红色值组成的数组。对于灰度图像,只返回相应的灰度。

>>> px = img[100,100]
>>> print( px )
[157 166 200]
# 仅访问蓝色像素
>>> blue = img[100,100,0]
>>> print( blue )
157

你可以用相同的方式修改像素值。

>>> img[100,100] = [255,255,255]
>>> print( img[100,100] )
[255 255 255]

警告

Numpy是用于快速数组计算的优化库。因此,简单地访问每个像素值并对其进行修改将非常缓慢,因此不建议使用。

注意

上面的方法通常用于选择数组的区域,例如前5行和后3列。对于单个像素访问,Numpy数组方法array.item()和array.itemset())被认为更好,但是它们始终返回标量。如果要访问所有B,G,R值,则需要分别调用所有的array.item()。

更好的像素访问和编辑方法:

# 访问 RED 值
>>> img.item(10,10,2)
59
# 修改 RED 值
>>> img.itemset((10,10,2),100)
>>> img.item(10,10,2)
100

访问图像属性

图像属性包括行数,列数和通道数,图像数据类型,像素数等。

图像的形状可通过img.shape访问。它返回行,列和通道数的元组(如果图像是彩色的):

>>> print( img.shape )
(342, 548, 3)

注意

如果图像是灰度的,则返回的元组仅包含行数和列数,因此这是检查加载的图像是灰度还是彩色的好方法。

像素总数可通过访问img.size

>>> print( img.size )
562248

图像数据类型通过img.dtype获得:

>>> print( img.dtype )
uint8

注意

img.dtype在调试时非常重要,因为OpenCV-Python代码中的大量错误是由无效的数据类型引起的。

图像感兴趣区域ROI

有时候,你不得不处理一些特定区域的图像。对于图像中的眼睛检测,首先对整个图像进行人脸检测。在获取人脸图像时,我们只选择人脸区域,搜索其中的眼睛,而不是搜索整个图像。它提高了准确性(因为眼睛总是在面部上:D )和性能(因为我们搜索的区域很小)。

使用Numpy索引再次获得ROI。在这里,我要选择球并将其复制到图像中的另一个区域:

>>> ball = img[280:340, 330:390]
>>> img[273:333, 100:160] = ball

检查以下结果:

拆分和合并图像通道

有时你需要分别处理图像的B,G,R通道。在这种情况下,你需要将BGR图像拆分为单个通道。在其他情况下,你可能需要将这些单独的频道加入BGR图片。你可以通过以下方式简单地做到这一点:

>>> b,g,r = cv.split(img) >>> img = cv.merge((b,g,r))

要么

>>> b = img [:, :, 0]

假设你要将所有红色像素都设置为零,则无需先拆分通道。numpy索引更快:

>>> img [:, :, 2] = 0

警告

cv.split()是一项耗时的操作(就时间而言)。因此,仅在必要时才这样做。否则请进行Numpy索引。

为图像设置边框(填充)

如果要在图像周围创建边框(如相框),则可以使用cv.copyMakeBorder()。但是它在卷积运算,零填充等方面有更多应用。此函数采用以下参数:

  • src - 输入图像

  • topbottomleftright 边界宽度(以相应方向上的像素数为单位)

  • borderType - 定义要添加哪种边框的标志。它可以是以下类型:

    • cv.BORDER_CONSTANT - 添加恒定的彩色边框。该值应作为下一个参数给出。
    • cv.BORDER_REFLECT - 边框将是边框元素的镜像,如下所示: fedcba | abcdefgh | hgfedcb
    • cv.BORDER_REFLECT_101cv.BORDER_DEFAULT与上述相同,但略有变化,例如: gfedcb | abcdefgh | gfedcba
    • cv.BORDER_REPLICATE最后一个元素被复制,像这样: aaaaaa | abcdefgh | hhhhhhh
    • cv.BORDER_WRAP难以解释,它看起来像这样: cdefgh | abcdefgh | abcdefg
  • value -边框的颜色,如果边框类型为cv.BORDER_CONSTANT

下面是一个示例代码,演示了所有这些边框类型,以便更好地理解:

import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt
BLUE = [255,0,0]
img1 = cv.imread('opencv-logo.png')
replicate = cv.copyMakeBorder(img1,10,10,10,10,cv.BORDER_REPLICATE)
reflect = cv.copyMakeBorder(img1,10,10,10,10,cv.BORDER_REFLECT)
reflect101 = cv.copyMakeBorder(img1,10,10,10,10,cv.BORDER_REFLECT_101)
wrap = cv.copyMakeBorder(img1,10,10,10,10,cv.BORDER_WRAP)
constant= cv.copyMakeBorder(img1,10,10,10,10,cv.BORDER_CONSTANT,value=BLUE)
plt.subplot(231),plt.imshow(img1,'gray'),plt.title('ORIGINAL')
plt.subplot(232),plt.imshow(replicate,'gray'),plt.title('REPLICATE')
plt.subplot(233),plt.imshow(reflect,'gray'),plt.title('REFLECT')
plt.subplot(234),plt.imshow(reflect101,'gray'),plt.title('REFLECT_101')
plt.subplot(235),plt.imshow(wrap,'gray'),plt.title('WRAP')
plt.subplot(236),plt.imshow(constant,'gray'),plt.title('CONSTANT')
plt.show()

请参阅下面的结果。(图像与matplotlib一起显示。因此红色和蓝色通道将互换):

欢迎关注磐创博客资源汇总站:

http://docs.panchuang.net/

欢迎关注PyTorch官方中文教程站:

http://pytorch.panchuang.net/

OpenCV-Python | 图像的基本操作 十的更多相关文章

  1. opencv python 图像二值化/简单阈值化/大津阈值法

    pip install matplotlib 1简单的阈值化 cv2.threshold第一个参数是源图像,它应该是灰度图像. 第二个参数是用于对像素值进行分类的阈值, 第三个参数是maxVal,它表 ...

  2. 11、OpenCV Python 图像金字塔

    __author__ = "WSX" import cv2 as cv import numpy as np # 高斯金字塔 #金字塔 原理 ==> 高斯模糊+ 降采样 #金 ...

  3. 10、OpenCV Python 图像二值化

    __author__ = "WSX" import cv2 as cv import numpy as np #-----------二值化(黑0和白 255)---------- ...

  4. 8、OpenCV Python 图像直方图

    __author__ = "WSX" import cv2 as cv import numpy as np from matplotlib import pyplot as pl ...

  5. 1、OpenCV Python 图像加载和保存

    __author__ = "WSX" import cv2 as cv # 这里的文件是图片或者视频 def Save_File( image ): cv.imwrite(&quo ...

  6. 12、OpenCV Python 图像梯度

    __author__ = "WSX" import cv2 as cv import numpy as np def lapalian_demo(image): #拉普拉斯算子 # ...

  7. 2、OpenCV Python 图像属性获取

    __author__ = "WSX" import cv2 as cv import numpy as np image = cv.imread("1.JPG" ...

  8. 使用Python+OpenCV进行图像模板匹配(Match Template)

    2017年9月22日 BY 蓝鲸 LEAVE A COMMENT 本篇文章介绍使用Python和OpenCV对图像进行模板匹配和识别.模板匹配是在图像中寻找和识别模板的一种简单的方法.以下是具体的步骤 ...

  9. opencv入门系列教学(五)图像的基本操作(像素值、属性、ROI和边框)

    0.序言 每个图像是由一个个点组成的,而这些点可以表示为像素值的形式. 这篇博客里我们将学会: 访问像素值并修改它们 . 访问图像属性 . 设置感兴趣区域(ROI) . 分割和合并图像. 对于图像的基 ...

随机推荐

  1. 先搞清楚这些问题,简历上再写你熟悉Java!

    原创声明 本文作者:黄小斜 转载请务必在文章开头注明出处和作者. 系列文章介绍 本文是<五分钟学Java>系列文章的一篇 本系列文章主要围绕Java程序员必须掌握的核心技能,结合我个人三年 ...

  2. plsql-工具安装部署及使用配置

    参考文档链接:https://blog.csdn.net/li66934791/article/details/83856225 简介: PL/SQL Developer是一个集成开发环境,专门开发面 ...

  3. unittest实战(三):用例编写

    # coding:utf-8import unittestfrom selenium import webdriverimport timefrom ddt import ddt, data, unp ...

  4. 深入理解React key

    一 react 组件元素的 diff 算法 二 key 的理解 概述 react 中的key 属性,它是一个特殊的属性,它的出现不是给开发者用的(例如你为一个组件设置key之后不能获取组件的这个key ...

  5. 浅谈静态布局、流式布局,rem布局,弹性布局、响应式布局

    静态布局: 特点:没有兼容性问题 PC:居中布局,所有样式使用绝对宽度/高度(px),设计一个Layout,在屏幕宽高有调整时,使用横向和竖向的滚动条来查阅被遮掩部分:移动设备:另外建立移动网站,单独 ...

  6. go-admin基于Gin + Vue + Element UI的前后端分离权限管理系统

    ✨ 特性 遵循 RESTful API 设计规范 基于 GIN WEB API 框架,提供了丰富的中间件支持(用户认证.跨域.访问日志.追踪ID等) 基于Casbin的 RBAC 访问控制模型 JWT ...

  7. Python数据科学手册(2) NumPy入门

    NumPy(Numerical Python 的简称)提供了高效存储和操作密集数据缓存的接口.在某些方面,NumPy 数组与 Python 内置的列表类型非常相似.但是随着数组在维度上变大,NumPy ...

  8. Python3 面向对象之:单继承

    一:什么面向对象的继承? 比较官方的说法就是: 继承(英语:inheritance)是面向对象软件技术当中的一个概念.如果一个类别A“继承自”另一个类别B,就把这个A称为“B的子类别”,而把B称为“A ...

  9. .NET写入文件操作

    2018-01-16  22:44:35 许多程序需要记录运行日志,这就需要将程序运行记录写入本机,一般是.txt 文本或.csv 文件.具体操作如下: 一.C#   using System.IO; ...

  10. Nodejs:md5入门介绍及crypto模块的应用

    简介 MD5(Message-Digest Algorithm)是计算机安全领域广泛使用的散列函数(又称哈希算法.摘要算法),主要用来确保消息的完整和一致性.常见的应用场景有密码保护.下载文件校验等. ...