目标

学会:

  • 访问像素值并修改它们
  • 访问图像属性
  • 设置感兴趣区域(ROI)
  • 分割和合并图像

本节中的几乎所有操作都主要与Numpy相关,而不是与OpenCV相关。要使用OpenCV编写更好的优化代码,需要Numpy的丰富知识。

(由于大多数示例都是单行代码,因此示例将在Python终端中显示)

访问和修改像素值

让我们先加载彩色图像:

>>> import numpy as np
>>> import cv2 as cv
>>> img = cv.imread('messi5.jpg')

你可以通过行和列坐标来访问像素值。对于 BGR 图像,它返回一个由蓝色、绿色和红色值组成的数组。对于灰度图像,只返回相应的灰度。

>>> px = img[100,100]
>>> print( px )
[157 166 200]
# 仅访问蓝色像素
>>> blue = img[100,100,0]
>>> print( blue )
157

你可以用相同的方式修改像素值。

>>> img[100,100] = [255,255,255]
>>> print( img[100,100] )
[255 255 255]

警告

Numpy是用于快速数组计算的优化库。因此,简单地访问每个像素值并对其进行修改将非常缓慢,因此不建议使用。

注意

上面的方法通常用于选择数组的区域,例如前5行和后3列。对于单个像素访问,Numpy数组方法array.item()和array.itemset())被认为更好,但是它们始终返回标量。如果要访问所有B,G,R值,则需要分别调用所有的array.item()。

更好的像素访问和编辑方法:

# 访问 RED 值
>>> img.item(10,10,2)
59
# 修改 RED 值
>>> img.itemset((10,10,2),100)
>>> img.item(10,10,2)
100

访问图像属性

图像属性包括行数,列数和通道数,图像数据类型,像素数等。

图像的形状可通过img.shape访问。它返回行,列和通道数的元组(如果图像是彩色的):

>>> print( img.shape )
(342, 548, 3)

注意

如果图像是灰度的,则返回的元组仅包含行数和列数,因此这是检查加载的图像是灰度还是彩色的好方法。

像素总数可通过访问img.size

>>> print( img.size )
562248

图像数据类型通过img.dtype获得:

>>> print( img.dtype )
uint8

注意

img.dtype在调试时非常重要,因为OpenCV-Python代码中的大量错误是由无效的数据类型引起的。

图像感兴趣区域ROI

有时候,你不得不处理一些特定区域的图像。对于图像中的眼睛检测,首先对整个图像进行人脸检测。在获取人脸图像时,我们只选择人脸区域,搜索其中的眼睛,而不是搜索整个图像。它提高了准确性(因为眼睛总是在面部上:D )和性能(因为我们搜索的区域很小)。

使用Numpy索引再次获得ROI。在这里,我要选择球并将其复制到图像中的另一个区域:

>>> ball = img[280:340, 330:390]
>>> img[273:333, 100:160] = ball

检查以下结果:

拆分和合并图像通道

有时你需要分别处理图像的B,G,R通道。在这种情况下,你需要将BGR图像拆分为单个通道。在其他情况下,你可能需要将这些单独的频道加入BGR图片。你可以通过以下方式简单地做到这一点:

>>> b,g,r = cv.split(img) >>> img = cv.merge((b,g,r))

要么

>>> b = img [:, :, 0]

假设你要将所有红色像素都设置为零,则无需先拆分通道。numpy索引更快:

>>> img [:, :, 2] = 0

警告

cv.split()是一项耗时的操作(就时间而言)。因此,仅在必要时才这样做。否则请进行Numpy索引。

为图像设置边框(填充)

如果要在图像周围创建边框(如相框),则可以使用cv.copyMakeBorder()。但是它在卷积运算,零填充等方面有更多应用。此函数采用以下参数:

  • src - 输入图像

  • topbottomleftright 边界宽度(以相应方向上的像素数为单位)

  • borderType - 定义要添加哪种边框的标志。它可以是以下类型:

    • cv.BORDER_CONSTANT - 添加恒定的彩色边框。该值应作为下一个参数给出。
    • cv.BORDER_REFLECT - 边框将是边框元素的镜像,如下所示: fedcba | abcdefgh | hgfedcb
    • cv.BORDER_REFLECT_101cv.BORDER_DEFAULT与上述相同,但略有变化,例如: gfedcb | abcdefgh | gfedcba
    • cv.BORDER_REPLICATE最后一个元素被复制,像这样: aaaaaa | abcdefgh | hhhhhhh
    • cv.BORDER_WRAP难以解释,它看起来像这样: cdefgh | abcdefgh | abcdefg
  • value -边框的颜色,如果边框类型为cv.BORDER_CONSTANT

下面是一个示例代码,演示了所有这些边框类型,以便更好地理解:

import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt
BLUE = [255,0,0]
img1 = cv.imread('opencv-logo.png')
replicate = cv.copyMakeBorder(img1,10,10,10,10,cv.BORDER_REPLICATE)
reflect = cv.copyMakeBorder(img1,10,10,10,10,cv.BORDER_REFLECT)
reflect101 = cv.copyMakeBorder(img1,10,10,10,10,cv.BORDER_REFLECT_101)
wrap = cv.copyMakeBorder(img1,10,10,10,10,cv.BORDER_WRAP)
constant= cv.copyMakeBorder(img1,10,10,10,10,cv.BORDER_CONSTANT,value=BLUE)
plt.subplot(231),plt.imshow(img1,'gray'),plt.title('ORIGINAL')
plt.subplot(232),plt.imshow(replicate,'gray'),plt.title('REPLICATE')
plt.subplot(233),plt.imshow(reflect,'gray'),plt.title('REFLECT')
plt.subplot(234),plt.imshow(reflect101,'gray'),plt.title('REFLECT_101')
plt.subplot(235),plt.imshow(wrap,'gray'),plt.title('WRAP')
plt.subplot(236),plt.imshow(constant,'gray'),plt.title('CONSTANT')
plt.show()

请参阅下面的结果。(图像与matplotlib一起显示。因此红色和蓝色通道将互换):

欢迎关注磐创博客资源汇总站:

http://docs.panchuang.net/

欢迎关注PyTorch官方中文教程站:

http://pytorch.panchuang.net/

OpenCV-Python | 图像的基本操作 十的更多相关文章

  1. opencv python 图像二值化/简单阈值化/大津阈值法

    pip install matplotlib 1简单的阈值化 cv2.threshold第一个参数是源图像,它应该是灰度图像. 第二个参数是用于对像素值进行分类的阈值, 第三个参数是maxVal,它表 ...

  2. 11、OpenCV Python 图像金字塔

    __author__ = "WSX" import cv2 as cv import numpy as np # 高斯金字塔 #金字塔 原理 ==> 高斯模糊+ 降采样 #金 ...

  3. 10、OpenCV Python 图像二值化

    __author__ = "WSX" import cv2 as cv import numpy as np #-----------二值化(黑0和白 255)---------- ...

  4. 8、OpenCV Python 图像直方图

    __author__ = "WSX" import cv2 as cv import numpy as np from matplotlib import pyplot as pl ...

  5. 1、OpenCV Python 图像加载和保存

    __author__ = "WSX" import cv2 as cv # 这里的文件是图片或者视频 def Save_File( image ): cv.imwrite(&quo ...

  6. 12、OpenCV Python 图像梯度

    __author__ = "WSX" import cv2 as cv import numpy as np def lapalian_demo(image): #拉普拉斯算子 # ...

  7. 2、OpenCV Python 图像属性获取

    __author__ = "WSX" import cv2 as cv import numpy as np image = cv.imread("1.JPG" ...

  8. 使用Python+OpenCV进行图像模板匹配(Match Template)

    2017年9月22日 BY 蓝鲸 LEAVE A COMMENT 本篇文章介绍使用Python和OpenCV对图像进行模板匹配和识别.模板匹配是在图像中寻找和识别模板的一种简单的方法.以下是具体的步骤 ...

  9. opencv入门系列教学(五)图像的基本操作(像素值、属性、ROI和边框)

    0.序言 每个图像是由一个个点组成的,而这些点可以表示为像素值的形式. 这篇博客里我们将学会: 访问像素值并修改它们 . 访问图像属性 . 设置感兴趣区域(ROI) . 分割和合并图像. 对于图像的基 ...

随机推荐

  1. 【OpenCv-Python】Getting Started with Images

    1.1读入图像 使用函数 cv2.imread() 读入图像.这幅图像应该在此程序的工作路径,或者给函数提供一个完整的路径,第二个参数是要告诉函数应该如何读取这幅图片. cv2.IMREAD_COLO ...

  2. 带你学习Javascript中的函数进阶(一)

    1. 函数的定义和调用 1.1 函数的定义方式 函数声明方式function关键字(命名函数) 函数表达式(匿名函数) new Function() var fn = new Function('参数 ...

  3. go微服务框架kratos学习笔记十(熔断器)

    目录 go微服务框架kratos学习笔记十(熔断器) 什么是熔断 熔断器逻辑 kratos Breaker kratos 熔断逻辑 kratos熔断器使用说明 bladmaster client br ...

  4. 跟我猜Spring-Boot:bean的创建

    废话在前 最近几年的技术路子很杂,先是node,然后是php,后来是openresty,再后来转到了java,而接触的框架(Framework),也越发的复杂,从最开始的express/koa,到lu ...

  5. 【DirectX 11学习笔记】世界矩阵的理解-运动合成

    最近在看龙书,写一下自己的学习理解,主要是物体运动的合成. 物体于局部坐标系内构建,每个物体拥有自己的局部坐标系以及相应的顶点矩阵A,并通过世界矩阵变换到唯一的世界坐标系. 物体在某时刻发生了位移和旋 ...

  6. WebGIS 利用 WebGL 在 MapboxGL 上渲染 DEM 三维空间数据

    毕业两年,一直在地图相关的公司工作,虽然不是 GIS 出身,但是也对地图有些耳濡目染:最近在看 WebGl 的东西,就拿 MapboxGL 做了一个关于 WebGL 的三维数据渲染的 DEMO 练手. ...

  7. idea创建简单web项目分析Servlet的请求转发与重定向的区别

     注:如需转载,请附上原文链接,如有建议或意见,欢迎批评指正! 需求说明: // index.jsp页面 1 <% 2 String basePath = request.getScheme() ...

  8. JS反爬绕过思路之--谷歌学术镜像网链接抓取

    首先,从问题出发: http://ac.scmor.com/ 在谷歌学术镜像网收集着多个谷歌镜像的链接.我们目标就是要把这些链接拿到手. F12查看源码可以发现,对应的a标签并不是我们想要的链接,而是 ...

  9. linux中的源码安装

    前两天自己在笔记本上装了CentOs版本的虚拟机,接着要装Python3,是源码安装的挺费劲,个人总结了一些源码安装的经验,今天在这里给大家分享一下. 1. 首先准备环境,安装必要的编译工具gcc g ...

  10. C语言程序设计(八) 数组

    第八章 数组 //L8-1 #include <stdio.h> int main() { int score1, score2, score3, score4, score5; int ...