【hive】——Hive sql语法详解
Hive 是基于Hadoop 构建的一套数据仓库分析系统,它提供了丰富的SQL查询方式来分析存储在Hadoop 分布式文件系统中的数据,可以将结构
化的数据文件映射为一张数据库表,并提供完整的SQL查询功能,可以将SQL语句转换为MapReduce任务进行运行,通过自己的SQL 去查询分析需
要的内容,这套SQL 简称Hive SQL,使不熟悉mapreduce 的用户很方便的利用SQL 语言查询,汇总,分析数据。而mapreduce开发人员可以把
己写的mapper 和reducer 作为插件来支持Hive 做更复杂的数据分析。
它与关系型数据库的SQL 略有不同,但支持了绝大多数的语句如DDL、DML 以及常见的聚合函数、连接查询、条件查询。HIVE不适合用于联机
online)事务处理,也不提供实时查询功能。它最适合应用在基于大量不可变数据的批处理作业。
HIVE的特点:可伸缩(在Hadoop的集群上动态的添加设备),可扩展,容错,输入格式的松散耦合。
Hive 的官方文档中对查询语言有了很详细的描述,请参考:http://wiki.apache.org/hadoop/Hive/LanguageManual ,本文的内容大部分翻译自该页面,期间加入了一些在使用过程中需要注意到的事项。
1. DDL 操作
建表:
[(col_name data_type [COMMENT col_comment], ...)]
[COMMENT table_comment]
[PARTITIONED BY (col_name data_type [COMMENT col_comment], ...)]
[CLUSTERED BY (col_name, col_name, ...)
[SORTED BY (col_name [ASC|DESC], ...)] INTO num_buckets BUCKETS]
[ROW FORMAT row_format]
[STORED AS file_format]
[LOCATION hdfs_path]
创建简单表:
hive> CREATE TABLE pokes (foo INT, bar STRING);
创建外部表:
建分区表
建Bucket表
创建表并创建索引字段ds
hive> CREATE TABLE invites (foo INT, bar STRING) PARTITIONED BY (ds STRING);
复制一个空表
例子
create table user_info (user_id int, cid string, ckid string, username string)
row format delimited
fields terminated by '\t'
lines terminated by '\n';
导入数据表的数据格式是:字段之间是tab键分割,行之间是断行。
及要我们的文件内容格式:
100636 100890 c5c86f4cddc15eb7 yyyvybtvt
100612 100865 97cc70d411c18b6f gyvcycy
100078 100087 ecd6026a15ffddf5 qa000100
显示所有表:
hive> SHOW TABLES;
按正条件(正则表达式)显示表,
hive> SHOW TABLES '.*s';
修改表结构
表添加一列 :
hive> ALTER TABLE pokes ADD COLUMNS (new_col INT);
添加一列并增加列字段注释
hive> ALTER TABLE invites ADD COLUMNS (new_col2 INT COMMENT 'a comment');
更改表名:
hive> ALTER TABLE events RENAME TO 3koobecaf;
删除列:
hive> DROP TABLE pokes;
增加、删除分区
重命名表
修改列的名字、类型、位置、注释:
表添加一列 :
hive> ALTER TABLE pokes ADD COLUMNS (new_col INT);
添加一列并增加列字段注释
hive> ALTER TABLE invites ADD COLUMNS (new_col2 INT COMMENT 'a comment');
增加/更新列
增加表的元数据信息
改变表文件格式与组织
创建/删除视图
创建数据库
显示命令
2. DML 操作:元数据存储
hive不支持用insert语句一条一条的进行插入操作,也不支持update操作。数据是以load的方式加载到建立好的表中。数据一旦导入就不可以修改。
向数据表内加载文件
hive> LOAD DATA LOCAL INPATH './examples/files/kv1.txt' OVERWRITE INTO TABLE pokes;
加载本地数据,同时给定分区信息
例如:加载本地数据,同时给定分区信息:
加载DFS数据 ,同时给定分区信息:
hive> LOAD DATA INPATH '/user/myname/kv2.txt' OVERWRITE INTO TABLE invites PARTITION (ds='2008-08-15');
The above command will load data from an HDFS file/directory to the table. Note that loading data from HDFS will result in moving the file/directory. As a result, the operation is almost instantaneous.
OVERWRITE
将查询结果插入Hive表
将查询结果写入HDFS文件系统
INSERT INTO
3. DQL 操作:数据查询SQL
3.1 基本的Select 操作
SELECT * FROM test SORT BY amount DESC LIMIT 5
例如
按先件查询
hive> SELECT a.foo FROM invites a WHERE a.ds='<DATE>';
将查询数据输出至目录:
hive> INSERT OVERWRITE DIRECTORY '/tmp/hdfs_out' SELECT a.* FROM invites a WHERE a.ds='<DATE>';
将查询结果输出至本地目录:
hive> INSERT OVERWRITE LOCAL DIRECTORY '/tmp/local_out' SELECT a.* FROM pokes a;
选择所有列到本地目录 :
hive> INSERT OVERWRITE TABLE events SELECT a.* FROM profiles a;
hive> INSERT OVERWRITE TABLE events SELECT a.* FROM profiles a WHERE a.key < 100;
hive> INSERT OVERWRITE LOCAL DIRECTORY '/tmp/reg_3' SELECT a.* FROM events a;
hive> INSERT OVERWRITE DIRECTORY '/tmp/reg_4' select a.invites, a.pokes FROM profiles a;
hive> INSERT OVERWRITE DIRECTORY '/tmp/reg_5' SELECT COUNT(1) FROM invites a WHERE a.ds='<DATE>';
hive> INSERT OVERWRITE DIRECTORY '/tmp/reg_5' SELECT a.foo, a.bar FROM invites a;
hive> INSERT OVERWRITE LOCAL DIRECTORY '/tmp/sum' SELECT SUM(a.pc) FROM pc1 a;
将一个表的统计结果插入另一个表中:
hive> FROM invites a INSERT OVERWRITE TABLE events SELECT a.bar, count(1) WHERE a.foo > 0 GROUP BY a.bar;
hive> INSERT OVERWRITE TABLE events SELECT a.bar, count(1) FROM invites a WHERE a.foo > 0 GROUP BY a.bar;
JOIN
hive> FROM pokes t1 JOIN invites t2 ON (t1.bar = t2.bar) INSERT OVERWRITE TABLE events SELECT t1.bar, t1.foo, t2.foo;
将多表数据插入到同一表中:
FROM src
INSERT OVERWRITE TABLE dest1 SELECT src.* WHERE src.key < 100
INSERT OVERWRITE TABLE dest2 SELECT src.key, src.value WHERE src.key >= 100 and src.key < 200
INSERT OVERWRITE TABLE dest3 PARTITION(ds='2008-04-08', hr='12') SELECT src.key WHERE src.key >= 200 and src.key < 300
INSERT OVERWRITE LOCAL DIRECTORY '/tmp/dest4.out' SELECT src.value WHERE src.key >= 300;
将文件流直接插入文件:
hive> FROM invites a INSERT OVERWRITE TABLE events SELECT TRANSFORM(a.foo, a.bar) AS (oof, rab) USING '/bin/cat' WHERE a.ds > '2008-08-09';
This streams the data in the map phase through the script /bin/cat (like hadoop streaming). Similarly - streaming can be used on the reduce side (please see the Hive Tutorial or examples)
3.2 基于Partition的查询
3.3 Join
table_reference JOIN table_factor [join_condition]
| table_reference {LEFT|RIGHT|FULL} [OUTER] JOIN table_reference join_condition
| table_reference LEFT SEMI JOIN table_reference join_condition
table_reference:
table_factor
| join_table
table_factor:
tbl_name [alias]
| table_subquery alias
| ( table_references )
join_condition:
ON equality_expression ( AND equality_expression )*
equality_expression:
expression = expression
ON (a.id = b.id AND a.department = b.department)
ON (a.key = b.key1) JOIN c ON (c.key = b.key2)
WHERE a.ds='2010-07-07' AND b.ds='2010-07-07‘
ON (c.key=d.key AND d.ds='2009-07-07' AND c.ds='2009-07-07')
FROM a
WHERE a.key in
(SELECT b.key
FROM B);
FROM a LEFT SEMI JOIN b on (a.key = b.key)
4. 从SQL到HiveQL应转变的习惯
1、Hive不支持等值连接
SELECT t1.a1 as c1, t2.b1 as c2FROM t1, t2
WHERE t1.a2 = t2.b2
2、分号字符
3、IS [NOT] NULL
4、Hive不支持将数据插入现有的表或分区中,
仅支持覆盖重写整个表,示例如下:
- INSERT OVERWRITE TABLE t1
- SELECT * FROM t2;
4、hive不支持INSERT INTO, UPDATE, DELETE操作
这样的话,就不要很复杂的锁机制来读写数据。
INSERT INTO syntax is only available starting in version 0.8。INSERT INTO就是在表或分区中追加数据。
5、hive支持嵌入mapreduce程序,来处理复杂的逻辑
如:
- FROM (
- MAP doctext USING 'python wc_mapper.py' AS (word, cnt)
- FROM docs
- CLUSTER BY word
- ) a
- REDUCE word, cnt USING 'python wc_reduce.py';
--doctext: 是输入
--word, cnt: 是map程序的输出
--CLUSTER BY: 将wordhash后,又作为reduce程序的输入
并且map程序、reduce程序可以单独使用,如:
- FROM (
- FROM session_table
- SELECT sessionid, tstamp, data
- DISTRIBUTE BY sessionid SORT BY tstamp
- ) a
- REDUCE sessionid, tstamp, data USING 'session_reducer.sh';
--DISTRIBUTE BY: 用于给reduce程序分配行数据
6、hive支持将转换后的数据直接写入不同的表,还能写入分区、hdfs和本地目录。
这样能免除多次扫描输入表的开销。
- FROM t1
- INSERT OVERWRITE TABLE t2
- SELECT t3.c2, count(1)
- FROM t3
- WHERE t3.c1 <= 20
- GROUP BY t3.c2
- INSERT OVERWRITE DIRECTORY '/output_dir'
- SELECT t3.c2, avg(t3.c1)
- FROM t3
- WHERE t3.c1 > 20 AND t3.c1 <= 30
- GROUP BY t3.c2
- INSERT OVERWRITE LOCAL DIRECTORY '/home/dir'
- SELECT t3.c2, sum(t3.c1)
- FROM t3
- WHERE t3.c1 > 30
- GROUP BY t3.c2;
5. 实际示例
创建一个表
CREATE TABLE u_data (
userid INT,
movieid INT,
rating INT,
unixtime STRING)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '/t'
STORED AS TEXTFILE;
下载示例数据文件,并解压缩
wget http://www.grouplens.org/system/files/ml-data.tar__0.gz
tar xvzf ml-data.tar__0.gz
加载数据到表中:
LOAD DATA LOCAL INPATH 'ml-data/u.data'
OVERWRITE INTO TABLE u_data;
统计数据总量:
SELECT COUNT(1) FROM u_data;
现在做一些复杂的数据分析:
创建一个 weekday_mapper.py: 文件,作为数据按周进行分割
import sys
import datetime
for line in sys.stdin:
line = line.strip()
userid, movieid, rating, unixtime = line.split('/t')
生成数据的周信息
weekday = datetime.datetime.fromtimestamp(float(unixtime)).isoweekday()
print '/t'.join([userid, movieid, rating, str(weekday)])
使用映射脚本
//创建表,按分割符分割行中的字段值
CREATE TABLE u_data_new (
userid INT,
movieid INT,
rating INT,
weekday INT)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '/t';
//将python文件加载到系统
add FILE weekday_mapper.py;
将数据按周进行分割
INSERT OVERWRITE TABLE u_data_new
SELECT
TRANSFORM (userid, movieid, rating, unixtime)
USING 'python weekday_mapper.py'
AS (userid, movieid, rating, weekday)
FROM u_data;
SELECT weekday, COUNT(1)
FROM u_data_new
GROUP BY weekday;
处理Apache Weblog 数据
将WEB日志先用正则表达式进行组合,再按需要的条件进行组合输入到表中
add jar ../build/contrib/hive_contrib.jar;
CREATE TABLE apachelog (
host STRING,
identity STRING,
user STRING,
time STRING,
request STRING,
status STRING,
size STRING,
referer STRING,
agent STRING)
ROW FORMAT SERDE 'org.apache.hadoop.hive.contrib.serde2.RegexSerDe'
WITH SERDEPROPERTIES (
"input.regex" = "([^ ]*) ([^ ]*) ([^ ]*) (-|//[[^//]]*//]) ([^ /"]*|/"[^/"]*/") (-|[0-9]*) (-|[0-9]*)(?: ([^ /"]*|/"[^/"]*/") ([^ /"]*|/"[^/"]*/"))?",
"output.format.string" = "%1$s %2$s %3$s %4$s %5$s %6$s %7$s %8$s %9$s"
)
STORED AS TEXTFILE;
【hive】——Hive sql语法详解的更多相关文章
- Hive笔记--sql语法详解及JavaAPI
Hive SQL 语法详解:http://blog.csdn.net/hguisu/article/details/7256833Hive SQL 学习笔记(常用):http://blog.sina. ...
- Hadoop Hive sql语法详解
Hadoop Hive sql语法详解 Hive 是基于Hadoop 构建的一套数据仓库分析系统,它提供了丰富的SQL查询方式来分析存储在Hadoop 分布式文件系统中的数据,可以将结构 化的数据文件 ...
- mysql用户授权、数据库权限管理、sql语法详解
mysql用户授权.数据库权限管理.sql语法详解 —— NiceCui 某个数据库所有的权限 ALL 后面+ PRIVILEGES SQL 某个数据库 特定的权限SQL mysql 授权语法 SQL ...
- 009-Hadoop Hive sql语法详解4-DQL 操作:数据查询SQL-select、join、union、udtf
一.基本的Select 操作 语法SELECT [ALL | DISTINCT] select_expr, select_expr, ...FROM table_reference[WHERE whe ...
- hive sql 语法详解
Hive 是基于Hadoop 构建的一套数据仓库分析系统,它提供了丰富的SQL查询方式来分析存储在Hadoop 分布式文件系统中的数据,可以将结构 化的数据文件映射为一张数据库表,并提供完整的SQL查 ...
- [转]Hadoop Hive sql语法详解
转自 : http://blog.csdn.net/hguisu/article/details/7256833 Hive 是基于Hadoop 构建的一套数据仓库分析系统,它提供了丰富的SQL查询方式 ...
- Hadoop Hive sql 语法详解
Hive 是基于Hadoop 构建的一套数据仓库分析系统,它提供了丰富的SQL查询方式来分析存储在Hadoop 分布式文件系统中的数据,可以将结构化的数据文件映射为一张数据库表,并提供完整的SQL查询 ...
- Hive sql语法详解
Hive 是基于Hadoop 构建的一套数据仓库分析系统,它提供了丰富的SQL查询方式来分析存储在Hadoop 分布式文件系统中的数据,可以将结构 化的数据文件映射为一张数据库表,并提供完整的SQ ...
- 010-Hadoop Hive sql语法详解5-HiveQL与SQL区别
1.Hive不支持等值连接 •SQL中对两表内联可以写成:•select * from dual a,dual b where a.key = b.key;•Hive中应为•select * from ...
随机推荐
- ThinkPHP学习(一)
下载3.2框架后,解压缩到web目录下面,可以看到初始的目录结构如下: 3.2版本相比之前的版本自带了一个完整的应用目录结构和默认的应用入口文件,开发人员可以在这个基 础之上灵活调整.其中, Appl ...
- TCP三次握手和四次挥手状态变迁解析
TCP是TCP/IP的传输层控制协议,提供可靠的连接服务,采用三次握手确认建立一个连接: 首先需要了解几个名词:tcp标志位,有6种分别为:SYN(synchronous建立联机) .ACK(ackn ...
- Mybatis - 动态sql
learn from:http://www.mybatis.org/mybatis-3/dynamic-sql.html mybatis支持动态拼接sql语句.主要有: if choose (when ...
- CSS魔法堂:小结一下Box Model与Positioning Scheme
前言 对于Box Model和Positioning Scheme中3种定位模式的细节,已经通过以下几篇文章记录了我对其的理解和思考. <CSS魔法堂:重新认识Box Model.IFC.B ...
- Net设计模式实例之建造者模式(Builder Pattern)
一.建造者模式简介(Brief Introduction) 建造者模式(Builder Pattern),将一个复杂对象的构建与它的表示分离,使的同样的构建过程可以创建不同的表示. 建造者模式的优点是 ...
- C#+JQuery+.Ashx+百度Echarts实现全国省市地图和饼状图动态数据图形报表的统计
在目前的一个项目中,需要用到报表表现数据,这些数据有多个维度,需要同时表现出来,同时可能会有大量数据呈现的需求,经过几轮挑选,最终选择了百度的echarts作为报表基础类库.echarts功能强大,界 ...
- 谈一谈.net析构函数对垃圾回收的影响
之前忘了说了 代码都是在Release模式下运行的,现在补充上. 这里说析构函数,其实并不准确,应该叫Finalize函数,Finalize函数形式上和c++的析构函数很像 ,都是(~ClassNam ...
- DDD心得
使用DDD分层架构有哪些好处 帮你更集中的管理业务逻辑. 帮你降低各层间,以及各业务模块间的依赖关系. 帮你更方便的进行单元测试. 我的DDD分层架构使用经验 使用充血模型,将业务逻辑尽量放到领域实体 ...
- Oracle 数据库基础学习 (八) PL/SQL综合练习
1.定义游标:列出每个员工的姓名.部门名称并编程显示第10个到第20个记录. declare cursor zemp_cursor is (select temp.ename, temp.dname ...
- iOS面试用到的一些知识点和技术
1.APP的生命周期和viewcontroler的生命周期? 答:APP的生命周期:在APP的代理中分为七个阶段: 1.将要启动 2.已经启动 3.将要进入非活动状态 4.进入后台 5.从后台进入前台 ...