两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。

Input

输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。

Output

输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible"

Sample Input

1 2 3 4 5

Sample Output

4

-1s

思路:扩展欧几里德,跳一次花费时间相同,说明跳的次数一样,相遇满足条件x+mt与y+nt对L同余,即:x+mt=y+nt+kL
即:(m-n)t-kL=y-x,t与k是未知数,a=m-n, b=-k,带入扩展欧几里德,得到gcd(a,b),若gcd(a,b)|y-x,则有解,否则无解
算出来的t,k是方程的一个特解,相当于at+bk=gcd(a,b),先将t*=(y-x)/gcd(a,b),再根据找最小解的情况解出答案即可
如何进行:
两个方程:
ax+by=gcd(a,b)
ax0+by0=gcd(a,b)
两式相减, 有 a(x-x0) = b(y0-y)
同除gcd(a,b), a/gcd(a,b)与b/gcd(a,b)互质,所以 b|x-x0, y同理, 又因为x与y相加满足(1)式,相当于一个增大一个减小
得到:
x = x0 + t * b/gcd(a,b)
y = y0 - t * a/gcd(a,b)
参考博客:https://www.cnblogs.com/caibingxu/p/10850664.html
本题代码:
typedef long long LL;

void ex_gcd(LL a, LL b, LL &x, LL &y, LL &d) {
if(!b) {
d = a, x = , y = ;
} else {
ex_gcd(b, a%b, y, x, d);
y -= (a/b)*x;
}
} int main(){
LL x, y, m, n, L, ansx, ansy, d;
scanf("%lld%lld%lld%lld%lld", &x, &y, &m, &n, &L);
ex_gcd(m-n, -L, ansx, ansy, d);
if((y-x) % d != ) {
printf("Impossible\n");
return ;
}
LL A = -L / d;
ansx *= (y-x)/d;
ansx = (ansx % A + A)%A;
printf("%lld\n", ansx);
return ;
}

 

 注意所求的最小解是大于0的,需要判断一下


Day7 - H - 青蛙的约会 POJ - 1061的更多相关文章

  1. AC日记——青蛙的约会 poj 1061

    青蛙的约会 POJ - 1061   思路: 扩展欧几里得: 设青蛙们要跳k步,我们可以得出式子 m*k+a≡n*k+b(mod l) 式子变形得到 m*k+a-n*k-b=t*l (m-n)*k-t ...

  2. 青蛙的约会 poj 1061

    青蛙的约会 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 86640   Accepted: 15232 Descripti ...

  3. 青蛙的约会 - poj 1061(扩展欧几里得)

    分析:这个东西在数论里面应该叫做不定方程式,可以搜一下,有很精彩的证明,先求出来方程式的一组特解,然后用这组特解来求通解,但是求出来特解之后怎么求这些解里面的最小非负x值?我们知道 x = x0 + ...

  4. 青蛙的约会 POJ - 1061 (exgcd)

    两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特 ...

  5. C - 青蛙的约会 POJ - 1061 (扩展欧几里得)

    题目链接:https://cn.vjudge.net/contest/276376#problem/C 题目大意:中文题目. 具体思路:扩展gcd,具体证明过程看图片(就这麽个题我搞了一天,,,). ...

  6. poj 1061 青蛙的约会 拓展欧几里得模板

    // poj 1061 青蛙的约会 拓展欧几里得模板 // 注意进行exgcd时,保证a,b是正数,最后的答案如果是负数,要加上一个膜 #include <cstdio> #include ...

  7. ACM: POJ 1061 青蛙的约会 -数论专题-扩展欧几里德

    POJ 1061 青蛙的约会 Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%lld & %llu  Descr ...

  8. POJ.1061 青蛙的约会 (拓展欧几里得)

    POJ.1061 青蛙的约会 (拓展欧几里得) 题意分析 我们设两只小青蛙每只都跳了X次,由于他们相遇,可以得出他们同余,则有: 代码总览 #include <iostream> #inc ...

  9. poj 1061 青蛙的约会 (扩展欧几里得模板)

    青蛙的约会 Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u Submit Status ...

随机推荐

  1. Oracle忘记密码怎么办?

    1.打开cmd,输入sqlplus /nolog,回车:输入“conn / as sysdba”;输入“alter user sys identified by 新密码”,注意:新密码最好以字母开头, ...

  2. VM player无法联网问题

    情况就是vmplayer不能联网,能联网的话右上角会显示Wired Connected的 在VM里面看了网络设置,是和主机共享IP(常用)没错.那问题就在PC上了,在win+r输入services.m ...

  3. c++对象初始化(翁恺c++公开课[10])

    c++对象初始化 就是去调用构造函数来完成初始化操作: 构造函数有无参数的构造函数.有参数构造函数.默认构造函数(编译器给我们实现的)...(拷贝构造函数之后说) 注意:默认构造函数只有在我们自己没有 ...

  4. 浅谈区块链和p2p网络

    最近对区块链产生了兴趣就去了解了一下,分享一下.... 首先要先了解一下什么叫做区块链: 区块链:简单来说就是一种基于分布式数据存储.点对点传输.共识机制.加密算法等计算机技术的新型应用模式. 相信说 ...

  5. 安装哪个python版本比较好

    四.电脑是32位选择第一个,64为选择第二个

  6. 若块级元素被设置为 display: table-cell 便无法设置宽度

    工作中,遇到表格的单元格中的 div 设置宽度无效,后来是发现 div 被设置为 display: table-cell ,后将其修改为 display: block 则设置的宽度生效.

  7. leetcode菜鸡斗智斗勇系列(5)--- 寻找拥有偶数数位的数字

    1.原题: https://leetcode.com/problems/find-numbers-with-even-number-of-digits/ Given an array nums of ...

  8. Vue Element-Ui 改变el-Input背景样式

    Element-ui是一个非常好的UI设计模块,它提供给我们很多好看的按钮样式,非常适用于快速搭建UI,下面说说如果使用了element-ui之后,要更改它默认的el-Input样式应该怎么操作. 使 ...

  9. java并发:初探用户线程和守护线程

    用户线程和守护线程 用户线程 用户线程执行完,jvm退出.守护线程还是可以跑的 /** * A <i>thread</i> is a thread of execution i ...

  10. GPU运行Tensorflow的几点建议

    1.在运行之前先查看GPU的使用情况: 指令:nvidia-smi 备注:查看GPU此时的使用情况 或者 指令:watch nvidia-smi 备注:实时返回GPU使用情况 2.指定GPU训练: 方 ...