A cubic number is the result of using a whole number in a multiplication three times.
For example, 3×3×3=27 so 27 is a cubic number. The first few cubic numbers are 1,8,27,64 and 125.
Given an prime number p. Check that if p is a difference of two cubic numbers.

Input

The first of input contains an integer T (1≤T≤100) which is the total number of test cases.
For each test case, a line contains a prime number p (2≤p≤1012).
Output
For each test case, output 'YES' if given p is a difference of two cubic numbers, or 'NO' if not.

Sample Input

10
2
3
5
7
11
13
17
19
23
29

Sample Output

NO
NO
NO
YES
NO
NO
NO
YES
NO
NO

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
using namespace std;
int main()
{
int T;
scanf("%d", &T);
while (T--)
{
ll n;
scanf("%lld", &n);
if ((n - 1) % 3)
{
printf("NO\n");
continue;
}
ll x = (ll)sqrt((n - 1) / 3);
if (x * (x + 1) == (n - 1) / 3)
printf("YES\n");
else
printf("NO\n");
}
return 0;
}

数学--数论--hdu 6216 A Cubic number and A Cubic Number (公式推导)的更多相关文章

  1. 数学--数论-- HDU -- 2854 Central Meridian Number (暴力打表)

    A Central Meridian (ACM) Number N is a positive integer satisfies that given two positive integers A ...

  2. 数学--数论--HDU - 6395 Let us define a sequence as below 分段矩阵快速幂

    Your job is simple, for each task, you should output Fn module 109+7. Input The first line has only ...

  3. 数学--数论--HDU 2582 F(N) 暴力打表找规律

    This time I need you to calculate the f(n) . (3<=n<=1000000) f(n)= Gcd(3)+Gcd(4)+-+Gcd(i)+-+Gc ...

  4. 数学--数论--HDU - 6322 打表找规律

    In number theory, Euler's totient function φ(n) counts the positive integers up to a given integer n ...

  5. 数学--数论--hdu 5878 I Count Two Three(二分)

    I will show you the most popular board game in the Shanghai Ingress Resistance Team. It all started ...

  6. 数学--数论-- HDU 2601 An easy problem(约束和)

    Problem Description When Teddy was a child , he was always thinking about some simple math problems ...

  7. 数学--数论--HDU - 6124 Euler theorem (打表找规律)

    HazelFan is given two positive integers a,b, and he wants to calculate amodb. But now he forgets the ...

  8. 数学--数论--HDU 6063 RXD and math (跟莫比乌斯没有半毛钱关系的打表)

    RXD is a good mathematician. One day he wants to calculate: output the answer module 109+7. p1,p2,p3 ...

  9. 数学--数论--HDU 1299 +POJ 2917 Diophantus of Alexandria (因子个数函数+公式推导)

    Diophantus of Alexandria was an egypt mathematician living in Alexandria. He was one of the first ma ...

随机推荐

  1. Hadoop安装教程_单机(含Java、ssh安装配置)

    文章更新于:2020-3-24 按照惯例,需要的文件附上链接放在文首 文件名:Java SE Development Kit 8u241 文件大小:72 MB+ 下载链接:https://www.or ...

  2. escape和unescape知识点

    decodeURI() 函数可对 encodeURI() 函数编码过的 URI 进行解码. encodeURI() 函数可把字符串作为 URI 进行编码 <script> var uri= ...

  3. Linux如何配制Tcl编程环境

    首先,打开终端. 接着在终端输入以下命令: sudo apt-get install tcl

  4. WordPress文章阅读量统计和显示(非插件, 刷新页面不累加)

    本文已同步到专业技术网站 www.sufaith.com, 该网站专注于前后端开发技术与经验分享, 包含Web开发.Nodejs.Python.Linux.IT资讯等板块. WordPress文章阅读 ...

  5. mysql> 12 simple but staple commands

    Edit at:  2019-12-28 16:52:42 1.mysql -u+username -p+password  --> connect mysql 2.use databasena ...

  6. [leetcode]1379. Find a Corresponding Node of a Binary Tree in a Clone of That Tree

    [leetcode]1379. Find a Corresponding Node of a Binary Tree in a Clone of That Tree 链接 leetcode 描述    ...

  7. L11注意力机制和Seq2seq模型

    注意力机制 在"编码器-解码器(seq2seq)"⼀节⾥,解码器在各个时间步依赖相同的背景变量(context vector)来获取输⼊序列信息.当编码器为循环神经⽹络时,背景变量 ...

  8. stand up meeting 11/30/2015

    part 组员 今日工作 工作耗时/h 明日计划 工作耗时/h UI 冯晓云   完善了UI的各项功能,弹窗的显示格式等方面的规范:解决logic部分调用该dll的问题:解决鼠标事件的捕捉中~     ...

  9. vue项目中使用bpmn-节点篇

    前情提要 根据之前的操作,我们可以创建.导入.导出流程图,并对其进预览.通过此篇可以学到: 为节点添加点击.鼠标悬浮等事件 获取流程图内所有指定类型的节点 通过外部更新节点名字 获取节点实例的两种方法 ...

  10. Git敏捷开发--rebase命令

    git rebase是git下比较常用的命令,以下记录自己遇到较多的使用场景. 合并分支 在多人协作的项目中,拉分支是很常见的事情,经常需要同步自己的分支与远端master分支一致,有两种方式: gi ...