LGOJ2257 YY的GCD
这题美好体验就是卡常
Description
求
\]
其中:\(1\leq n,m \leq 10^7\),多组询问
Solution
对于这种与\(gcd\)相关的反演题,有一个好的套路
设\(f(d)=[gcd(i,j)=d]\),\(F(n)\)为\(gcd(i,j)=d\)和\(d\)的倍数的个数,即:
\]
\]
\]
由着这个套路,我们开始化简这个式子
\]
将\(f(p)\)带入:
\]
把\(f(x)\)换成\(F(x)\)
\]
我们枚举\(\lfloor \frac{d}{p} \rfloor\)
\]
再把\(F(dp)\)换成最终式:
\]
令\(T=dp\),则有:
\]
\]
推到这里,我们就都可以做了
\(\mu(\space)\)可以线性筛,其他的可以整除分块
CODE
#include<bits/stdc++.h>
#define reg register
using namespace std;
namespace yspm{
inline int read()
{
int res=0,f=1; char k;
while(!isdigit(k=getchar())) if(k=='-') f=-1;
while(isdigit(k)) res=res*10+k-'0',k=getchar();
return res*f;
}
const int N=10000010;
bool vis[N]; int pri[N],mu[N],g[N],cnt;
#define ll long long
ll sum[N];
inline void prework()
{
mu[1]=1;
for(reg int i=2;i<N;++i)
{
if(!vis[i]){mu[i]=-1;pri[++cnt]=i;}
for(reg int j=1;j<=cnt&&pri[j]*i<N;++j)
{
vis[i*pri[j]]=1;
if(i%pri[j]==0) break;
else mu[pri[j]*i]-=mu[i];
}
}
for(reg int j=1;j<=cnt;++j)
{
for(reg int i=1;i*pri[j]<N;++i) g[i*pri[j]]+=mu[i];
}
for(reg int i=1;i<N;++i) sum[i]=sum[i-1]+(ll)g[i];
return ;
}
inline void work()
{
int n=read(),m=read(); if(n>m) swap(n,m);
ll ans=0;
for(reg int l=1,r;l<=n;l=r+1)
{
r=min(n/(n/l),m/(m/l));
ans+=1ll*(n/l)*(m/l)*(sum[r]-sum[l-1]);
}printf("%lld\n",ans);
return ;
}
signed main()
{
prework(); int T=read(); while(T--) work();
return 0;
}
}
signed main(){return yspm::main();}
不禁感叹一句,能让 \(yspm\) 这种信奉 \(define \space int \space long \space long\) 的人都不全用 $ long \space long $ 的得是什么卡常\(sb\)题呀!!!
LGOJ2257 YY的GCD的更多相关文章
- BZOJ 2820: YY的GCD [莫比乌斯反演]【学习笔记】
2820: YY的GCD Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1624 Solved: 853[Submit][Status][Discu ...
- [BZOJ2820]YY的GCD
[BZOJ2820]YY的GCD 试题描述 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少 ...
- bzoj 2820 YY的GCD 莫比乌斯反演
题目大意: 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对 这里就抄一下别人的推断过程了 后面这个g(x) 算的方法就是在线性 ...
- 【BZOJ】【2820】YY的GCD
莫比乌斯反演 PoPoQQQ讲义第二题. 暴力枚举每个质数,然后去更新它的倍数即可,那个g[x]看不懂就算了…… 为什么去掉了一个memset就不T了→_→…… /****************** ...
- 【莫比乌斯反演】关于Mobius反演与gcd的一些关系与问题简化(bzoj 2301 Problem b&&bzoj 2820 YY的GCD&&BZOJ 3529 数表)
首先我们来看一道题 BZOJ 2301 Problem b Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd( ...
- 【BZOJ 2820】 YY的GCD (莫比乌斯+分块)
YY的GCD Description 神犇YY虐完数论后给傻×kAc出了一题 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少 ...
- 【BZOJ2820】YY的GCD(莫比乌斯反演)
[BZOJ2820]YY的GCD(莫比乌斯反演) 题面 讨厌权限题!!!提供洛谷题面 题解 单次询问\(O(n)\)是做过的一模一样的题目 但是现在很显然不行了, 于是继续推 \[ans=\sum_{ ...
- YY的GCD
YY的GCD 给出T个询问,询问\(\sum_{i=1}^N\sum_{j=1}^M(gcd(i,j)\in prime)\),T = 10000,N, M <= 10000000. 解 显然质 ...
- 洛谷【P2257】YY的GCD
YY的GCD 原题链接 这应该是我做的第一道莫比乌斯反演的题目. 题目描述 神犇YY虐完数论后给傻×kAc出了一题 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x ...
随机推荐
- 出现UnboundLocalError: local variable 'a' referenced before assignment异常的情况与解决方法
出现UnboundLocalError: local variable ‘a’ referenced before assignment异常的情况与解决方法字面意思:局部变量赋值前被引用原因:局部变量 ...
- 【转帖】虚拟化Pod性能比裸机还要好,原因竟然是这样!
虚拟化Pod性能比裸机还要好,原因竟然是这样! http://www.itpub.net/2020/02/27/5340/ 其实感觉 linux也可以做到 NUMA的节点优化 其实 直接在 ESXi上 ...
- [极客大挑战 2019]Knife
根据题目Knife 猜想尝试用蚁剑连接 http://40b92ebd-5234-40b7-b2e0-3c42fb5ad000.node3.buuoj.cn/?Knife.php 密码:Syc 找到f ...
- Vue.js——5.生命周期
Vue的生命周期 创建阶段new Vue1,beforeCreate() 表示在实例没有被创建出来之前会执行它加载data和methods2,caeated() data 和methods被初始化了 ...
- ubuntu 插网线无法上网解决方案
前言 不知道最近是什么情况,ubuntu链接网线总是上不去网,但是wifi还能用,一直也就没有捣鼓,不过今天连wifi都不能用了,只能开始修理了. 修复方案 使用ifconfig命令查看以太网的名称 ...
- List和Map集合详细分析
1.Java集合主要三种类型(两部分): 第一部分:Collection(存单个数据,只能存取引用类型) (1).List :是一个有序集合,可以放重复的数据:(存顺序和取顺序相同) (2).Set ...
- numpy(二)
1.集合操作 包含去重,交,并,差集操作 2.排序.搜索和计数 sort,where,argmin,argmax,count_nonzero,argwhere 3.线性代数 np.linalg库,包含 ...
- Python列出文件夹中的文件
几乎所有的关于操作系统的内容可以在python 官方文档中找到:https://docs.python.org/3/library/os.html#module-os 其中os.path被单独列出:h ...
- Linux-进程关系
(1).无关系 (2).父子进程关系 (3).进程组(group):由若干个进程构成一个进程组 (4).会话(session):由若干个进程组构成一个会话
- [Python]安装和运行flask框架
随着你的 Python 项目越来越多,你会发现不同的项目会需要 不同的版本的 Python 库.同一个 Python 库的不同版本可能不兼容.虚拟环境可以为每一个项目安装独立的 Python 库,这样 ...