LGOJ2257 YY的GCD
这题美好体验就是卡常
Description
求
\]
其中:\(1\leq n,m \leq 10^7\),多组询问
Solution
对于这种与\(gcd\)相关的反演题,有一个好的套路
设\(f(d)=[gcd(i,j)=d]\),\(F(n)\)为\(gcd(i,j)=d\)和\(d\)的倍数的个数,即:
\]
\]
\]
由着这个套路,我们开始化简这个式子
\]
将\(f(p)\)带入:
\]
把\(f(x)\)换成\(F(x)\)
\]
我们枚举\(\lfloor \frac{d}{p} \rfloor\)
\]
再把\(F(dp)\)换成最终式:
\]
令\(T=dp\),则有:
\]
\]
推到这里,我们就都可以做了
\(\mu(\space)\)可以线性筛,其他的可以整除分块
CODE
#include<bits/stdc++.h>
#define reg register
using namespace std;
namespace yspm{
inline int read()
{
int res=0,f=1; char k;
while(!isdigit(k=getchar())) if(k=='-') f=-1;
while(isdigit(k)) res=res*10+k-'0',k=getchar();
return res*f;
}
const int N=10000010;
bool vis[N]; int pri[N],mu[N],g[N],cnt;
#define ll long long
ll sum[N];
inline void prework()
{
mu[1]=1;
for(reg int i=2;i<N;++i)
{
if(!vis[i]){mu[i]=-1;pri[++cnt]=i;}
for(reg int j=1;j<=cnt&&pri[j]*i<N;++j)
{
vis[i*pri[j]]=1;
if(i%pri[j]==0) break;
else mu[pri[j]*i]-=mu[i];
}
}
for(reg int j=1;j<=cnt;++j)
{
for(reg int i=1;i*pri[j]<N;++i) g[i*pri[j]]+=mu[i];
}
for(reg int i=1;i<N;++i) sum[i]=sum[i-1]+(ll)g[i];
return ;
}
inline void work()
{
int n=read(),m=read(); if(n>m) swap(n,m);
ll ans=0;
for(reg int l=1,r;l<=n;l=r+1)
{
r=min(n/(n/l),m/(m/l));
ans+=1ll*(n/l)*(m/l)*(sum[r]-sum[l-1]);
}printf("%lld\n",ans);
return ;
}
signed main()
{
prework(); int T=read(); while(T--) work();
return 0;
}
}
signed main(){return yspm::main();}
不禁感叹一句,能让 \(yspm\) 这种信奉 \(define \space int \space long \space long\) 的人都不全用 $ long \space long $ 的得是什么卡常\(sb\)题呀!!!
LGOJ2257 YY的GCD的更多相关文章
- BZOJ 2820: YY的GCD [莫比乌斯反演]【学习笔记】
2820: YY的GCD Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1624 Solved: 853[Submit][Status][Discu ...
- [BZOJ2820]YY的GCD
[BZOJ2820]YY的GCD 试题描述 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少 ...
- bzoj 2820 YY的GCD 莫比乌斯反演
题目大意: 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对 这里就抄一下别人的推断过程了 后面这个g(x) 算的方法就是在线性 ...
- 【BZOJ】【2820】YY的GCD
莫比乌斯反演 PoPoQQQ讲义第二题. 暴力枚举每个质数,然后去更新它的倍数即可,那个g[x]看不懂就算了…… 为什么去掉了一个memset就不T了→_→…… /****************** ...
- 【莫比乌斯反演】关于Mobius反演与gcd的一些关系与问题简化(bzoj 2301 Problem b&&bzoj 2820 YY的GCD&&BZOJ 3529 数表)
首先我们来看一道题 BZOJ 2301 Problem b Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd( ...
- 【BZOJ 2820】 YY的GCD (莫比乌斯+分块)
YY的GCD Description 神犇YY虐完数论后给傻×kAc出了一题 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少 ...
- 【BZOJ2820】YY的GCD(莫比乌斯反演)
[BZOJ2820]YY的GCD(莫比乌斯反演) 题面 讨厌权限题!!!提供洛谷题面 题解 单次询问\(O(n)\)是做过的一模一样的题目 但是现在很显然不行了, 于是继续推 \[ans=\sum_{ ...
- YY的GCD
YY的GCD 给出T个询问,询问\(\sum_{i=1}^N\sum_{j=1}^M(gcd(i,j)\in prime)\),T = 10000,N, M <= 10000000. 解 显然质 ...
- 洛谷【P2257】YY的GCD
YY的GCD 原题链接 这应该是我做的第一道莫比乌斯反演的题目. 题目描述 神犇YY虐完数论后给傻×kAc出了一题 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x ...
随机推荐
- 十分简明易懂的FFT(快速傅里叶变换)
https://blog.csdn.net/enjoy_pascal/article/details/81478582 FFT前言快速傅里叶变换 (fast Fourier transform),即利 ...
- XML--XML概览
参考 https://www.cnblogs.com/fangjian0423/p/xml-namespace.html http://www.w3school.com.cn/x.asp xmlns ...
- AD软件将PCB中的元器件旋转45度
- Cracking Digital VLSI Verification Interview 第一章
目录 Digital Logic Design Number Systems, Arithmetic and Codes Basic Gates Combinational Logic Circuit ...
- spring aop中的propagation的7种配置
1.前言 在声明式的事务处理中,要配置一个切面,即一组方法,如 <tx:advice id="txAdvice" transaction-manager="txMa ...
- vue 动画框架Animate.css @keyframes
<script src="vue.js"></script> <link rel="stylesheet" href=" ...
- Thread--线程工作万花筒
线程工作内存图. 线程状态.
- CentOS7下MySQL8的二进制基本安装配置
前言 基于本地Centos7.6虚拟机Mysql8的配置(亲测有效) 一.安装前的准备 1.到官网下载mysql-8.0.16-linux-glibc2.12-x86_64.tar.xz 2.通过Xs ...
- sqlserver2008的sql语句支持的最大长度
想写一个sql语句,很长,主要是in后跟着无数个用户ID,(虽然实现方式很低级,但是还是凑合着用吧) 不知道sql最大长度是多少,看了 SQL Server 的最大容量规范,写的是 包含 SQL 语句 ...
- 使用图数据库 Nebula Graph 数据导入快速体验知识图谱
本文由 Nebula Graph 实习生@王杰贡献. 最近 @Yener 开源了史上最大规模的中文知识图谱——OwnThink(链接:https://github.com/ownthink/Knowl ...