总所周知,FPGA极其不擅长复杂算法的运算,但是如果项目中又涉及一些高级算法的实现,在没有可封装IP核调用的形式下,我们应该如何进行程序开发呢?今夕已经是2020年,我们一味依赖于用verilog写代码无异于用汇编写程序,这种方式无异于古时钻木取火的原始时代。如今用Matlab联调FPGA,基于simulink的Hdl Coder模块搭建算法模型,再自动生成代码才是高阶有效的终极玩法。尤其在一些信号处理领域,掌握Matlab联调FPGA的技术更是必备技能。

下面以卡尔曼滤波为例,具体讲述如何基于Hdl Coder实现卡尔曼滤波算法实现。首先简单介绍下卡尔曼滤波算法:

卡尔曼滤波(Kalman filtering)是一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法。由于观测数据中包含系统噪声和干扰的影响,所以最优估计也可看作是滤波过程。简单来说,它就是利用过去的状态值和现在的测量值来更正现在的状态值,利用卡尔曼增益不停在估计和测量中寻找最优化的平衡值。

Kalman filtering的经典五方程,在进行卡尔曼滤波的程序设计前必须要充分理解这五个方程的定义、推导以及相关变量的设定。

(1) 对于现在状态的预测方程:

X(k|k-1)=A X(k-1|k-1)+B U(k) ……….. (1)

P(k|k-1)=A P(k-1|k-1) A’+Q ……… (2)

(2)对于现在状态的更新方程:(拿过去的真实值得到现在的预测值,再集合现在的测量值Z(k),进行现在状态值的更新)

X(k|k)= X(k|k-1)+Kg(k) (Z(k)-H X(k|k-1)) ……… (3)

Kg(k)= P(k|k-1) H’ / (H P(k|k-1) H’ + R) ……… (4)

P(k|k)=(I-Kg(k) H)P(k|k-1) ……… (5)

其中Z(k)=H X(k)+V(k)为观测方程。

对于上述方程要明确以下几个变量的赋值:

1) 状态转移矩阵:A

2) 系统控制变量:U(k)

3) 观测矩阵:H

4)系统状态初值:X(0|0)

5)系统协方差:P(0|0)

6)R:测量噪声

7)Q:过程噪声

8)Z:观测值

这7个变量要根据不同的产品以及应用场景进行具体赋值,其中对于单系统输入,变量赋值为:

1)A=1(状态转移矩阵),U(k)=0(系统控制变量), H=1(观测矩阵),B=1(对于一维变量,全为1)

2)Z观测值就是系统外部灌进来的实时变量。

3)系统协方差:P(0|0),可以采样一段时间后进行运算保证在kalman滤波器工作前进行赋值即可。

4)对于卡尔曼应用,最难确定的就是Q、R这两个噪声,只能根据实际模型,不停调整以逼近最优解。

基于上述的卡尔曼滤波搭建simulink仿真模型

下面对上述simulink模型进行进一步封装

具体设置kalman模块的Hdl Coder参数模式

最后点击“Generate HDL”与“Generate Test Bench”,生成verilog源程序与测试代码

要对执行文件进行仿真,只需要在modelsim命令框自动执行以下后缀文件即可“kalman_compile.do”,"kalman_tb_compile.do","kalman_tb_sim.do"即可。

下面进行卡拉曼滤波效果展示:

验证目的:调整Q的参数值,验证下Modelsim的仿真波形是否有对应的正确变化
1)Q=0.003,R=0.0001,,预计结果滤波后的噪声跟原始噪声相差不大。

结果展示:

验证结果:原始噪声与滤波后噪声幅值基本一致,符合期望值。

2)Q=0.0000003,R=0.0001,预计滤波后的噪声跟原始噪声幅度值相差较大,滤波效果较好。

结果展示:

验证结果:卡尔曼滤波后噪声幅值较小,符合输出期望值。
 
因此,基于Hdl Coder实现卡尔曼滤波算法结束。
 
Ps:最近一周心情太差,压力满满,茶饭不思,唯有将无限的精力投身于自己喜欢的FPGA身上了,希望早日摆脱雾霾,早日活力满满!

基于Hdl Coder实现卡尔曼滤波算法的更多相关文章

  1. Google Cardboard的九轴融合算法——基于李群的扩展卡尔曼滤波

    Google Cardboard的九轴融合算法 --基于李群的扩展卡尔曼滤波 极品巧克力 前言 九轴融合算法是指通过融合IMU中的加速度计(三轴).陀螺仪(三轴).磁场计(三轴),来获取物体姿态的方法 ...

  2. 基于FPGA的腐蚀膨胀算法实现

    本篇文章我要写的是基于的腐蚀膨胀算法实现,腐蚀膨胀是形态学图像处理的基础,,腐蚀在二值图像的基础上做"收缩"或"细化"操作,膨胀在二值图像的基础上做" ...

  3. 基于MATLAB的腐蚀膨胀算法实现

    本篇文章要分享的是基于MATLAB的腐蚀膨胀算法实现,腐蚀膨胀是形态学图像处理的基础,腐蚀在二值图像的基础上做“收缩”或“细化”操作,膨胀在二值图像的基础上做“加长”或“变粗”的操作. 什么是二值图像 ...

  4. matlab中hdl coder 的使用

    今天摸索了一下hdl coder的使用方法,各个步骤主要是照猫画虎,有些地方还是不理解,先总结一下: 1.要想调用quartus或者Xilinx综合布局布线需要先设置,设置的方法有两种,命令窗口输入 ...

  5. 基于视觉信息的网页分块算法(VIPS) - yysdsyl的专栏 - 博客频道 - CSDN.NET

    基于视觉信息的网页分块算法(VIPS) - yysdsyl的专栏 - 博客频道 - CSDN.NET 于视觉信息的网页分块算法(VIPS) 2012-07-29 15:22 1233人阅读 评论(1) ...

  6. VIPS:基于视觉的页面分割算法[微软下一代搜索引擎核心分页算法]

    VIPS:基于视觉的页面分割算法[微软下一代搜索引擎核心分页算法] - tingya的专栏 - 博客频道 - CSDN.NET VIPS:基于视觉的页面分割算法[微软下一代搜索引擎核心分页算法] 分类 ...

  7. 基于FPGA的肤色识别算法实现

    大家好,给大家介绍一下,这是基于FPGA的肤色识别算法实现. 我们今天这篇文章有两个内容一是实现基于FPGA的彩色图片转灰度实现,然后在这个基础上实现基于FPGA的肤色检测算法实现. 将彩色图像转化为 ...

  8. 基于MATLAB的人脸识别算法的研究

    基于MATLAB的人脸识别算法的研究 作者:lee神 现如今机器视觉越来越盛行,从智能交通系统的车辆识别,车牌识别到交通标牌的识别:从智能手机的人脸识别的性别识别:如今无人驾驶汽车更是应用了大量的机器 ...

  9. 基于RNN的音频降噪算法 (附完整C代码)

    前几天无意间看到一个项目rnnoise. 项目地址: https://github.com/xiph/rnnoise 基于RNN的音频降噪算法. 采用的是 GRU/LSTM 模型. 阅读下训练代码,可 ...

随机推荐

  1. ES6特性之:参数默认值

    作为一个开发者,跟进行业步伐是非常需要的,不能躺在现有的知识和经验温床上做美梦.JavaScript的ES2015标准(即我们说的ES6)在2016年已经被广泛应用了,还没开始使用的朋友,赶紧来磨一下 ...

  2. 《SQL初学者指南》——第1章 关系型数据库和SQL

    第1章 关系型数据库和SQL SQL初学者指南在本章中,我们将介绍一些背景知识,以便于你能够很快地上手,能在后续的章节中编写SQL语句.本章有两个主题.首先是对本书所涉及到的数据库做一个概述,并且介绍 ...

  3. 数学--数论--欧拉降幂--P5091 欧拉定理

    题目背景 出题人也想写有趣的题面,可惜并没有能力. 题目描述 给你三个正整数,a,m,ba,m,ba,m,b,你需要求:ab mod ma^b \bmod mabmodm 输入格式 一行三个整数,a, ...

  4. 洛谷P1771 方程的解

    P1771 方程的解 都知道这个题可以用隔板法做 把这个\(g(x)\)想象为.....\(g(x)\)个苹果? 因为解是正整数,所以给这些"苹果"分组的时候每组最少有一个 然后我 ...

  5. Springboot-WebFlux实现http重定向到https

    1 简介 Spring WebFlux是一个新兴的技术,Spring团队把宝都压在响应式Reactive上了,于是推出了全新的Web实现.本文不讨论响应式编程,而是通过实例讲解Springboot W ...

  6. python json.dumps中ensure_ascii的使用,load与loads的区别

    json模块最常用的两个功能: 一:json.dumps(),用于将dict拆分成str格式,称为序列化,注意序列化后,虽然print出来仍然显示的字典的样子,但是此时已经是str类型了. 其中,有时 ...

  7. Python基础01 集合

    初始化 # python3 # coding = utf-8 mylist = [] for item in range(10): mylist.append(item * 10 + 3) myset ...

  8. FPGA实现-shift_ram_3x3矩阵

    shift_ram_3x3-FPGA实现 实现的方法为方法二,可以参考上一节关于中值滤波的介绍 shift_ram核介绍 https://www.cnblogs.com/ninghechuan/p/6 ...

  9. basicRF双向灯光控制

    题目: 实现基于BasicRF无线点对点通信的双向灯光控制,具体要求如下: 1> 节点A 和节点B 的PANID设置为0x1234,通道号设置为17,节点地址自定义.<2> 按下节点 ...

  10. 深入理解Mybatis插件

    Mybatis插件实现原理 本文如有任何纰漏.错误,请不吝指出,谢谢! 首先,我并没有使用过 Mybatis的插件,但是这个和我写这篇文章并不冲突,估计能真正使用到插件的人也比较少,写这篇文章的目的主 ...