原题传送门


题意

给定一个n条边n个点的连通图,求该图的某一点在该图距离最远的点距离它的距离的最小值。


题解

显然,答案是\(\frac {原图直径}{2}\)。

本体的图有 \(n\) 个点 \(n\) 条边,很显然是基环树。

那么拆掉任意一条环上的边,该图就会变为一颗普通树。

随意选择一条环上的边断开,设一端为 \(s\),一端为 \(t\), 长度为 \(len\)。

分类讨论一下该图的直径经过环和断边的情况:

1、直径经过断开的边;

2、直径不经过断开的边,经过环;

3、直径不经过环。

显然,若直径经过断开的边,就需要得出环上每个点的字数距离 \(s\) 最远点距离 \(s\) 的值,此值很显然可以在环上跑一边 \(DP\) 求出;

若直径不经过断开的边,则需要得出环上某两个点的子树的最远点之间的距离的最大值,此值仍然可以在环上跑一边 \(DP\) 求出。

故我们可以从 \(s\) 点开始,\(O(n)\) 从两个方向扫两遍环,在扫环的过程中,求出直径不经过环的情况的答案,同时维护两个 \(DP\) 值:

1、经过的环上的点的子树中,距离 \(s\) 最远的点距离 \(s\) 的值,定义该值为 \(u_1\)(正向)和 \(u_2\)(反向);

2、在经过的环上的点中,某两个距离最远的子树的最远点之间的距离,定义该值为 \(v_1\)(正向)和 \(v_2\)(反向);

扫描结束后,再遍历一遍环上的点更新答案值。

\(DP\) 方程:

\(ans = min(ans, max (max (v_1[i], v_2[i + 1]), u_1[i] + u_2[i + 1] + len))\)

注意更新结束后,还需要与直径不经过环的情况求一下最值。


代码:

#include <bits/stdc++.h>
#define int long long
using namespace std;
const int N = 1e5 + 5;
int n, sum, mx, cirsum, ans, ans1, tim, lstlen, f[N], u1[N], u2[N], v1[N], v2[N], fa[N], fal[N], tims[N], oncir[N], cirnum[N], cirlen[N];
vector <pair <int, int> > v[N];
void make_cir (int s, int t) {
int now = s;
while (now != t) {
oncir[now] = 1;
cirnum[++ cirsum] = now;
cirlen[cirsum] = fal[now];
now = fa[now];
}
return ;
}
void dfs (int x) {
tims[x] = ++ tim;
for (int i = 0; i < v[x].size (); i ++) {
int y = v[x][i].first;
if (tims[y] && tims[y] > tims[x]) {
make_cir (y, x);
oncir[x] = 1;
cirnum[++ cirsum] = x;
cirlen[cirsum] = v[x][i].second;
} else if (!tims[y]) {
fa[y] = x;
fal[y] = v[x][i].second;
dfs (y);
}
}
return ;
}
void dfs2 (int x, int lst) {
for (int i = 0; i < v[x].size(); i ++) {
int y = v[x][i].first, w = v[x][i].second;
if (y == lst || oncir[y])
continue ;
dfs2 (y, x);
ans = max (ans, f[x] + f[y] + w);
f[x] = max (f[x], f[y] + w);
}
return ;
}
signed main () {
scanf ("%lld", &n);
for (int i = 1; i <= n; i ++) {
int uu, vv, ww;
scanf ("%lld%lld%lld", &uu, &vv, &ww);
v[uu].push_back (make_pair (vv, ww));
v[vv].push_back (make_pair (uu, ww));
}
dfs (1);
for (int i = 1; i <= cirsum; i ++)
dfs2 (cirnum[i], 0);
for (int i = 1; i <= cirsum; i ++) {
sum += cirlen[i - 1];
u1[i] = max (u1[i - 1], f[cirnum[i]] + sum);
v1[i] = max (v1[i - 1], f[cirnum[i]] + mx + sum);
mx = max (mx, f[cirnum[i]] - sum);
}
lstlen = cirlen[cirsum];
cirlen[cirsum] = 0;
sum = 0;
mx = 0;
for (int i = cirsum; i >= 1; i --) {
sum += cirlen[i];
u2[i] = max (u2[i + 1], f[cirnum[i]] + sum);
v2[i] = max (v2[i + 1], f[cirnum[i]] + mx + sum);
mx = max (mx, f[cirnum[i]] - sum);
}
ans1 = v1[cirsum];
for (int i = 1; i < cirsum; i ++)
ans1 = min (ans1, max (max (v1[i], v2[i + 1]), u1[i] + u2[i + 1] + lstlen));
ans = max (ans, ans1);
printf ("%.1lf\n", (double)(ans / 2));
return 0;
}

本博客思路参考自 https://blog.csdn.net/zlttttt/article/details/73149529

BZOJ3242 快餐店的更多相关文章

  1. 【BZOJ3242】【NOI2013】快餐店(动态规划)

    [BZOJ3242][NOI2013]快餐店(动态规划) 题面 BZOJ 题解 假设我们要做的是一棵树,那么答案显然是树的直径的一半. 证明? 假设树的直径是\(2d\),那么此时最远点的距离是\(d ...

  2. 【BZOJ3242】【UOJ#126】【NOI2013】快餐店

    NOI都是这种难度的题怎么玩嘛QAQ 原题: 小T打算在城市C开设一家外送快餐店.送餐到某一个地点的时间与外卖店到该地点之间最短路径长度是成正比的,小T希望快餐店的地址选在离最远的顾客距离最近的地方. ...

  3. BZOJ3242 [Noi2013]快餐店 【环套树 + 单调队列dp】

    题目链接 BZOJ3242 题解 题意很清楚,找一点使得最远点最近 如果是一棵树,就是直径中点 现在套上了一个环,我们把环单独拿出来 先求出环上每个点外向树直径更新答案,并同时求出环上每个点外向的最远 ...

  4. BZOJ3242/UOJ126 [Noi2013]快餐店

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...

  5. bzoj3242 [Noi2013]快餐店

    Description 小T打算在城市C开设一家外送快餐店.送餐到某一个地点的时间与外卖店到该地点之间最短路径长度是成正比的,小T希望快餐店的地址选在离最远的顾客距离最近的地方. 快餐店的顾客分布在城 ...

  6. 3242: [Noi2013]快餐店 - BZOJ

    Description 小T打算在城市C开设一家外送快餐店.送餐到某一个地点的时间与外卖店到该地点之间最短路径长度是成正比的,小T希望快餐店的地址选在离最远的顾客距离最近的地方. 快餐店的顾客分布在城 ...

  7. 快餐店运行模拟C++程序源码代写

    某快餐店供应若干种快餐和饮料(5种以上),早晨6:00开始营业,晚上11:00打烊.前一天已经安排了若干工人上班,快餐店的用餐位是固定的,每种食物的成本和销售价格是确定的,每种食物的总量是确定的,储存 ...

  8. 从医生看病和快餐店点餐理解Node.js的事件驱动

    第一个例子是关于医生看病. 在美国去看医生,需要填写大量表格,比如保险.个人信息之类,传统的基于线程的系统(thread-based system),接待员叫到你,你需要在前台填写完成这些表格,你站着 ...

  9. bzoj 3242: [Noi2013]快餐店 章鱼图

    3242: [Noi2013]快餐店 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 266  Solved: 140[Submit][Status] ...

随机推荐

  1. Android中如何使用对话框(单选对话框和多选对话框)

    在主XML中声明两个Button,声明Id package com.example.myapplication; import androidx.appcompat.app.AlertDialog; ...

  2. Java实现One-way traffic(单向交通)

    One-way traffic In a certain town there are n intersections connected by two- and one-way streets. T ...

  3. java实现拍7游戏

    ** 拍7游戏** 许多人都曾经玩过"拍七"游戏.规则是:大家依次从1开始顺序数数,数到含有7或7的倍数的要拍手或其它规定的方式表示越过(比如:7,14,17等都不能数出),下一人 ...

  4. Java实现第九届蓝桥杯全球变暖

    全球变暖 题目描述 你有一张某海域NxN像素的照片,"."表示海洋."#"表示陆地,如下所示: ....... .##.... .##.... ....##. ...

  5. java实现第四届蓝桥杯带分数

    带分数 题目描述 100 可以表示为带分数的形式:100 = 3 + 69258 / 714 还可以表示为:100 = 82 + 3546 / 197 注意特征:带分数中,数字1~9分别出现且只出现一 ...

  6. hadoop启动后,9000端口无法连接,netstat -tpnl中找不到该端口

    已解决: 需要重新格式化hdfs. 1.停止hdfs: 2.删除hdfs的相关文件目录(hdfs-site.xml中配置的存放文件的目录). 3.启动journalnode:sbin/hadoop-d ...

  7. HTML 5的革新——语义化标签section和article的区别

    原文地址:https://stackoverflow.com/questions/33910294/what-is-the-difference-between-article-and-section ...

  8. 使用 UniApp 实现小程序的微信登录

    微信登录思路: 在main.js 中封装公共函数,用于判断用户是否登录 在main.js 中分定义全局变量,用于存储接口地址 如果没有登录.则跳转至登录页面 进入登录页面 通过 wx.login 获取 ...

  9. [源码解析] Flink的groupBy和reduce究竟做了什么

    [源码解析] Flink的groupBy和reduce究竟做了什么 目录 [源码解析] Flink的groupBy和reduce究竟做了什么 0x00 摘要 0x01 问题和概括 1.1 问题 1.2 ...

  10. JFinal 源码解析-MVC部分

    首先从请求入口看起,应用初始化时加载web.xml的JFinalFilter,和configClass 从这段配置可以看出jfinal和spring mvc入口类似,通过一个实现Servlet Fil ...