Thread类是Android为线程操作而做的一个封装。代码在Thread.cpp中,其中还封装了一些与线程同步相关的类。

Thread类

Thread类的构造函数中的有一个canCallJava
Thread.cpp

/system/core/libutils/Threads.cpp

线程创建流程

/*
* Copyright (C) 2007 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/ // #define LOG_NDEBUG 0
#define LOG_TAG "libutils.threads" #include <assert.h>
#include <errno.h>
#include <memory.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h> #if !defined(_WIN32)
# include <pthread.h>
# include <sched.h>
# include <sys/resource.h>
#else
# include <windows.h>
# include <stdint.h>
# include <process.h>
# define HAVE_CREATETHREAD // Cygwin, vs. HAVE__BEGINTHREADEX for MinGW
#endif #if defined(__linux__)
#include <sys/prctl.h>
#endif #include <utils/threads.h>
#include <utils/Log.h> #include <cutils/sched_policy.h> #ifdef HAVE_ANDROID_OS
# define __android_unused
#else
# define __android_unused __attribute__((__unused__))
#endif /*
* ===========================================================================
* Thread wrappers
* ===========================================================================
*/ using namespace android; // ----------------------------------------------------------------------------
#if !defined(_WIN32)
// ---------------------------------------------------------------------------- /*
* Create and run a new thread.
*
* We create it "detached", so it cleans up after itself.
*/ typedef void* (*android_pthread_entry)(void*); struct thread_data_t {
thread_func_t entryFunction;
void* userData;
int priority;
char * threadName; // we use this trampoline when we need to set the priority with
// nice/setpriority, and name with prctl.
static int trampoline(const thread_data_t* t) {
thread_func_t f = t->entryFunction;
void* u = t->userData;
int prio = t->priority;
char * name = t->threadName;
delete t;
setpriority(PRIO_PROCESS, , prio);
if (prio >= ANDROID_PRIORITY_BACKGROUND) {
set_sched_policy(, SP_BACKGROUND);
} else {
set_sched_policy(, SP_FOREGROUND);
} if (name) {
androidSetThreadName(name);
free(name);
}
return f(u);
}
}; void androidSetThreadName(const char* name) {
#if defined(__linux__)
// Mac OS doesn't have this, and we build libutil for the host too
int hasAt = ;
int hasDot = ;
const char *s = name;
while (*s) {
if (*s == '.') hasDot = ;
else if (*s == '@') hasAt = ;
s++;
}
int len = s - name;
if (len < || hasAt || !hasDot) {
s = name;
} else {
s = name + len - ;
}
prctl(PR_SET_NAME, (unsigned long) s, , , );
#endif
} int androidCreateRawThreadEtc(android_thread_func_t entryFunction,
void *userData,
const char* threadName __android_unused,
int32_t threadPriority,
size_t threadStackSize,
android_thread_id_t *threadId)
{
pthread_attr_t attr;
pthread_attr_init(&attr);
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); #ifdef HAVE_ANDROID_OS /* valgrind is rejecting RT-priority create reqs */
if (threadPriority != PRIORITY_DEFAULT || threadName != NULL) {
// Now that the pthread_t has a method to find the associated
// android_thread_id_t (pid) from pthread_t, it would be possible to avoid
// this trampoline in some cases as the parent could set the properties
// for the child. However, there would be a race condition because the
// child becomes ready immediately, and it doesn't work for the name.
// prctl(PR_SET_NAME) only works for self; prctl(PR_SET_THREAD_NAME) was
// proposed but not yet accepted.
thread_data_t* t = new thread_data_t;
t->priority = threadPriority;
t->threadName = threadName ? strdup(threadName) : NULL;
t->entryFunction = entryFunction;
t->userData = userData;
entryFunction = (android_thread_func_t)&thread_data_t::trampoline;
userData = t;
}
#endif if (threadStackSize) {
pthread_attr_setstacksize(&attr, threadStackSize);
} errno = ;
pthread_t thread;
int result = pthread_create(&thread, &attr,
(android_pthread_entry)entryFunction, userData);
pthread_attr_destroy(&attr);
if (result != ) {
ALOGE("androidCreateRawThreadEtc failed (entry=%p, res=%d, errno=%d)\n"
"(android threadPriority=%d)",
entryFunction, result, errno, threadPriority);
return ;
} // Note that *threadID is directly available to the parent only, as it is
// assigned after the child starts. Use memory barrier / lock if the child
// or other threads also need access.
if (threadId != NULL) {
*threadId = (android_thread_id_t)thread; // XXX: this is not portable
}
return ;
} #ifdef HAVE_ANDROID_OS
static pthread_t android_thread_id_t_to_pthread(android_thread_id_t thread)
{
return (pthread_t) thread;
}
#endif android_thread_id_t androidGetThreadId()
{
return (android_thread_id_t)pthread_self();
} // ----------------------------------------------------------------------------
#else // !defined(_WIN32)
// ---------------------------------------------------------------------------- /*
* Trampoline to make us __stdcall-compliant.
*
* We're expected to delete "vDetails" when we're done.
*/
struct threadDetails {
int (*func)(void*);
void* arg;
};
static __stdcall unsigned int threadIntermediary(void* vDetails)
{
struct threadDetails* pDetails = (struct threadDetails*) vDetails;
int result; result = (*(pDetails->func))(pDetails->arg); delete pDetails; ALOG(LOG_VERBOSE, "thread", "thread exiting\n");
return (unsigned int) result;
} /*
* Create and run a new thread.
*/
static bool doCreateThread(android_thread_func_t fn, void* arg, android_thread_id_t *id)
{
HANDLE hThread;
struct threadDetails* pDetails = new threadDetails; // must be on heap
unsigned int thrdaddr; pDetails->func = fn;
pDetails->arg = arg; #if defined(HAVE__BEGINTHREADEX)
hThread = (HANDLE) _beginthreadex(NULL, , threadIntermediary, pDetails, ,
&thrdaddr);
if (hThread == )
#elif defined(HAVE_CREATETHREAD)
hThread = CreateThread(NULL, ,
(LPTHREAD_START_ROUTINE) threadIntermediary,
(void*) pDetails, , (DWORD*) &thrdaddr);
if (hThread == NULL)
#endif
{
ALOG(LOG_WARN, "thread", "WARNING: thread create failed\n");
return false;
} #if defined(HAVE_CREATETHREAD)
/* close the management handle */
CloseHandle(hThread);
#endif if (id != NULL) {
*id = (android_thread_id_t)thrdaddr;
} return true;
} int androidCreateRawThreadEtc(android_thread_func_t fn,
void *userData,
const char* /*threadName*/,
int32_t /*threadPriority*/,
size_t /*threadStackSize*/,
android_thread_id_t *threadId)
{
return doCreateThread( fn, userData, threadId);
} android_thread_id_t androidGetThreadId()
{
return (android_thread_id_t)GetCurrentThreadId();
} // ----------------------------------------------------------------------------
#endif // !defined(_WIN32) // ---------------------------------------------------------------------------- int androidCreateThread(android_thread_func_t fn, void* arg)
{
return createThreadEtc(fn, arg);
} int androidCreateThreadGetID(android_thread_func_t fn, void *arg, android_thread_id_t *id)
{
return createThreadEtc(fn, arg, "android:unnamed_thread",
PRIORITY_DEFAULT, , id);
} static android_create_thread_fn gCreateThreadFn = androidCreateRawThreadEtc; int androidCreateThreadEtc(android_thread_func_t entryFunction,
void *userData,
const char* threadName,
int32_t threadPriority,
size_t threadStackSize,
android_thread_id_t *threadId)
{
return gCreateThreadFn(entryFunction, userData, threadName,
threadPriority, threadStackSize, threadId);
} void androidSetCreateThreadFunc(android_create_thread_fn func)
{
gCreateThreadFn = func;
} #ifdef HAVE_ANDROID_OS
int androidSetThreadPriority(pid_t tid, int pri)
{
int rc = ; #if !defined(_WIN32)
int lasterr = ; if (pri >= ANDROID_PRIORITY_BACKGROUND) {
rc = set_sched_policy(tid, SP_BACKGROUND);
} else if (getpriority(PRIO_PROCESS, tid) >= ANDROID_PRIORITY_BACKGROUND) {
rc = set_sched_policy(tid, SP_FOREGROUND);
} if (rc) {
lasterr = errno;
} if (setpriority(PRIO_PROCESS, tid, pri) < ) {
rc = INVALID_OPERATION;
} else {
errno = lasterr;
}
#endif return rc;
} int androidGetThreadPriority(pid_t tid) {
#if !defined(_WIN32)
return getpriority(PRIO_PROCESS, tid);
#else
return ANDROID_PRIORITY_NORMAL;
#endif
} #endif namespace android { /*
* ===========================================================================
* Mutex class
* ===========================================================================
*/ #if !defined(_WIN32)
// implemented as inlines in threads.h
#else Mutex::Mutex()
{
HANDLE hMutex; assert(sizeof(hMutex) == sizeof(mState)); hMutex = CreateMutex(NULL, FALSE, NULL);
mState = (void*) hMutex;
} Mutex::Mutex(const char* name)
{
// XXX: name not used for now
HANDLE hMutex; assert(sizeof(hMutex) == sizeof(mState)); hMutex = CreateMutex(NULL, FALSE, NULL);
mState = (void*) hMutex;
} Mutex::Mutex(int type, const char* name)
{
// XXX: type and name not used for now
HANDLE hMutex; assert(sizeof(hMutex) == sizeof(mState)); hMutex = CreateMutex(NULL, FALSE, NULL);
mState = (void*) hMutex;
} Mutex::~Mutex()
{
CloseHandle((HANDLE) mState);
} status_t Mutex::lock()
{
DWORD dwWaitResult;
dwWaitResult = WaitForSingleObject((HANDLE) mState, INFINITE);
return dwWaitResult != WAIT_OBJECT_0 ? - : NO_ERROR;
} void Mutex::unlock()
{
if (!ReleaseMutex((HANDLE) mState))
ALOG(LOG_WARN, "thread", "WARNING: bad result from unlocking mutex\n");
} status_t Mutex::tryLock()
{
DWORD dwWaitResult; dwWaitResult = WaitForSingleObject((HANDLE) mState, );
if (dwWaitResult != WAIT_OBJECT_0 && dwWaitResult != WAIT_TIMEOUT)
ALOG(LOG_WARN, "thread", "WARNING: bad result from try-locking mutex\n");
return (dwWaitResult == WAIT_OBJECT_0) ? : -;
} #endif // !defined(_WIN32) /*
* ===========================================================================
* Condition class
* ===========================================================================
*/ #if !defined(_WIN32)
// implemented as inlines in threads.h
#else /*
* Windows doesn't have a condition variable solution. It's possible
* to create one, but it's easy to get it wrong. For a discussion, and
* the origin of this implementation, see:
*
* http://www.cs.wustl.edu/~schmidt/win32-cv-1.html
*
* The implementation shown on the page does NOT follow POSIX semantics.
* As an optimization they require acquiring the external mutex before
* calling signal() and broadcast(), whereas POSIX only requires grabbing
* it before calling wait(). The implementation here has been un-optimized
* to have the correct behavior.
*/
typedef struct WinCondition {
// Number of waiting threads.
int waitersCount; // Serialize access to waitersCount.
CRITICAL_SECTION waitersCountLock; // Semaphore used to queue up threads waiting for the condition to
// become signaled.
HANDLE sema; // An auto-reset event used by the broadcast/signal thread to wait
// for all the waiting thread(s) to wake up and be released from
// the semaphore.
HANDLE waitersDone; // This mutex wouldn't be necessary if we required that the caller
// lock the external mutex before calling signal() and broadcast().
// I'm trying to mimic pthread semantics though.
HANDLE internalMutex; // Keeps track of whether we were broadcasting or signaling. This
// allows us to optimize the code if we're just signaling.
bool wasBroadcast; status_t wait(WinCondition* condState, HANDLE hMutex, nsecs_t* abstime)
{
// Increment the wait count, avoiding race conditions.
EnterCriticalSection(&condState->waitersCountLock);
condState->waitersCount++;
//printf("+++ wait: incr waitersCount to %d (tid=%ld)\n",
// condState->waitersCount, getThreadId());
LeaveCriticalSection(&condState->waitersCountLock); DWORD timeout = INFINITE;
if (abstime) {
nsecs_t reltime = *abstime - systemTime();
if (reltime < )
reltime = ;
timeout = reltime/;
} // Atomically release the external mutex and wait on the semaphore.
DWORD res =
SignalObjectAndWait(hMutex, condState->sema, timeout, FALSE); //printf("+++ wait: awake (tid=%ld)\n", getThreadId()); // Reacquire lock to avoid race conditions.
EnterCriticalSection(&condState->waitersCountLock); // No longer waiting.
condState->waitersCount--; // Check to see if we're the last waiter after a broadcast.
bool lastWaiter = (condState->wasBroadcast && condState->waitersCount == ); //printf("+++ wait: lastWaiter=%d (wasBc=%d wc=%d)\n",
// lastWaiter, condState->wasBroadcast, condState->waitersCount); LeaveCriticalSection(&condState->waitersCountLock); // If we're the last waiter thread during this particular broadcast
// then signal broadcast() that we're all awake. It'll drop the
// internal mutex.
if (lastWaiter) {
// Atomically signal the "waitersDone" event and wait until we
// can acquire the internal mutex. We want to do this in one step
// because it ensures that everybody is in the mutex FIFO before
// any thread has a chance to run. Without it, another thread
// could wake up, do work, and hop back in ahead of us.
SignalObjectAndWait(condState->waitersDone, condState->internalMutex,
INFINITE, FALSE);
} else {
// Grab the internal mutex.
WaitForSingleObject(condState->internalMutex, INFINITE);
} // Release the internal and grab the external.
ReleaseMutex(condState->internalMutex);
WaitForSingleObject(hMutex, INFINITE); return res == WAIT_OBJECT_0 ? NO_ERROR : -;
}
} WinCondition; /*
* Constructor. Set up the WinCondition stuff.
*/
Condition::Condition()
{
WinCondition* condState = new WinCondition; condState->waitersCount = ;
condState->wasBroadcast = false;
// semaphore: no security, initial value of 0
condState->sema = CreateSemaphore(NULL, , 0x7fffffff, NULL);
InitializeCriticalSection(&condState->waitersCountLock);
// auto-reset event, not signaled initially
condState->waitersDone = CreateEvent(NULL, FALSE, FALSE, NULL);
// used so we don't have to lock external mutex on signal/broadcast
condState->internalMutex = CreateMutex(NULL, FALSE, NULL); mState = condState;
} /*
* Destructor. Free Windows resources as well as our allocated storage.
*/
Condition::~Condition()
{
WinCondition* condState = (WinCondition*) mState;
if (condState != NULL) {
CloseHandle(condState->sema);
CloseHandle(condState->waitersDone);
delete condState;
}
} status_t Condition::wait(Mutex& mutex)
{
WinCondition* condState = (WinCondition*) mState;
HANDLE hMutex = (HANDLE) mutex.mState; return ((WinCondition*)mState)->wait(condState, hMutex, NULL);
} status_t Condition::waitRelative(Mutex& mutex, nsecs_t reltime)
{
WinCondition* condState = (WinCondition*) mState;
HANDLE hMutex = (HANDLE) mutex.mState;
nsecs_t absTime = systemTime()+reltime; return ((WinCondition*)mState)->wait(condState, hMutex, &absTime);
} /*
* Signal the condition variable, allowing one thread to continue.
*/
void Condition::signal()
{
WinCondition* condState = (WinCondition*) mState; // Lock the internal mutex. This ensures that we don't clash with
// broadcast().
WaitForSingleObject(condState->internalMutex, INFINITE); EnterCriticalSection(&condState->waitersCountLock);
bool haveWaiters = (condState->waitersCount > );
LeaveCriticalSection(&condState->waitersCountLock); // If no waiters, then this is a no-op. Otherwise, knock the semaphore
// down a notch.
if (haveWaiters)
ReleaseSemaphore(condState->sema, , ); // Release internal mutex.
ReleaseMutex(condState->internalMutex);
} /*
* Signal the condition variable, allowing all threads to continue.
*
* First we have to wake up all threads waiting on the semaphore, then
* we wait until all of the threads have actually been woken before
* releasing the internal mutex. This ensures that all threads are woken.
*/
void Condition::broadcast()
{
WinCondition* condState = (WinCondition*) mState; // Lock the internal mutex. This keeps the guys we're waking up
// from getting too far.
WaitForSingleObject(condState->internalMutex, INFINITE); EnterCriticalSection(&condState->waitersCountLock);
bool haveWaiters = false; if (condState->waitersCount > ) {
haveWaiters = true;
condState->wasBroadcast = true;
} if (haveWaiters) {
// Wake up all the waiters.
ReleaseSemaphore(condState->sema, condState->waitersCount, ); LeaveCriticalSection(&condState->waitersCountLock); // Wait for all awakened threads to acquire the counting semaphore.
// The last guy who was waiting sets this.
WaitForSingleObject(condState->waitersDone, INFINITE); // Reset wasBroadcast. (No crit section needed because nobody
// else can wake up to poke at it.)
condState->wasBroadcast = ;
} else {
// nothing to do
LeaveCriticalSection(&condState->waitersCountLock);
} // Release internal mutex.
ReleaseMutex(condState->internalMutex);
} #endif // !defined(_WIN32) // ---------------------------------------------------------------------------- /*
* This is our thread object!
*/ Thread::Thread(bool canCallJava)
: mCanCallJava(canCallJava),
mThread(thread_id_t(-)),
mLock("Thread::mLock"),
mStatus(NO_ERROR),
mExitPending(false), mRunning(false)
#ifdef HAVE_ANDROID_OS
, mTid(-)
#endif
{
} Thread::~Thread()
{
} status_t Thread::readyToRun()
{
return NO_ERROR;
} status_t Thread::run(const char* name, int32_t priority, size_t stack)
{
Mutex::Autolock _l(mLock); if (mRunning) {
// thread already started
return INVALID_OPERATION;
} // reset status and exitPending to their default value, so we can
// try again after an error happened (either below, or in readyToRun())
mStatus = NO_ERROR;
mExitPending = false;
mThread = thread_id_t(-); // hold a strong reference on ourself
mHoldSelf = this; mRunning = true; bool res;
if (mCanCallJava) {
res = createThreadEtc(_threadLoop,
this, name, priority, stack, &mThread);
} else {
res = androidCreateRawThreadEtc(_threadLoop,
this, name, priority, stack, &mThread);
} if (res == false) {
mStatus = UNKNOWN_ERROR; // something happened!
mRunning = false;
mThread = thread_id_t(-);
mHoldSelf.clear(); // "this" may have gone away after this. return UNKNOWN_ERROR;
} // Do not refer to mStatus here: The thread is already running (may, in fact
// already have exited with a valid mStatus result). The NO_ERROR indication
// here merely indicates successfully starting the thread and does not
// imply successful termination/execution.
return NO_ERROR; // Exiting scope of mLock is a memory barrier and allows new thread to run
} int Thread::_threadLoop(void* user)
{
Thread* const self = static_cast<Thread*>(user); sp<Thread> strong(self->mHoldSelf);
wp<Thread> weak(strong);
self->mHoldSelf.clear(); #ifdef HAVE_ANDROID_OS
// this is very useful for debugging with gdb
self->mTid = gettid();
#endif bool first = true; do {
bool result;
if (first) {
first = false;
self->mStatus = self->readyToRun();
result = (self->mStatus == NO_ERROR); if (result && !self->exitPending()) {
// Binder threads (and maybe others) rely on threadLoop
// running at least once after a successful ::readyToRun()
// (unless, of course, the thread has already been asked to exit
// at that point).
// This is because threads are essentially used like this:
// (new ThreadSubclass())->run();
// The caller therefore does not retain a strong reference to
// the thread and the thread would simply disappear after the
// successful ::readyToRun() call instead of entering the
// threadLoop at least once.
result = self->threadLoop();
}
} else {
result = self->threadLoop();
} // establish a scope for mLock
{
Mutex::Autolock _l(self->mLock);
if (result == false || self->mExitPending) {
self->mExitPending = true;
self->mRunning = false;
// clear thread ID so that requestExitAndWait() does not exit if
// called by a new thread using the same thread ID as this one.
self->mThread = thread_id_t(-);
// note that interested observers blocked in requestExitAndWait are
// awoken by broadcast, but blocked on mLock until break exits scope
self->mThreadExitedCondition.broadcast();
break;
}
} // Release our strong reference, to let a chance to the thread
// to die a peaceful death.
strong.clear();
// And immediately, re-acquire a strong reference for the next loop
strong = weak.promote();
} while(strong != ); return ;
} void Thread::requestExit()
{
Mutex::Autolock _l(mLock);
mExitPending = true;
} status_t Thread::requestExitAndWait()
{
Mutex::Autolock _l(mLock);
if (mThread == getThreadId()) {
ALOGW(
"Thread (this=%p): don't call waitForExit() from this "
"Thread object's thread. It's a guaranteed deadlock!",
this); return WOULD_BLOCK;
} mExitPending = true; while (mRunning == true) {
mThreadExitedCondition.wait(mLock);
}
// This next line is probably not needed any more, but is being left for
// historical reference. Note that each interested party will clear flag.
mExitPending = false; return mStatus;
} status_t Thread::join()
{
Mutex::Autolock _l(mLock);
if (mThread == getThreadId()) {
ALOGW(
"Thread (this=%p): don't call join() from this "
"Thread object's thread. It's a guaranteed deadlock!",
this); return WOULD_BLOCK;
} while (mRunning == true) {
mThreadExitedCondition.wait(mLock);
} return mStatus;
} bool Thread::isRunning() const {
Mutex::Autolock _l(mLock);
return mRunning;
} #ifdef HAVE_ANDROID_OS
pid_t Thread::getTid() const
{
// mTid is not defined until the child initializes it, and the caller may need it earlier
Mutex::Autolock _l(mLock);
pid_t tid;
if (mRunning) {
pthread_t pthread = android_thread_id_t_to_pthread(mThread);
tid = pthread_gettid_np(pthread);
} else {
ALOGW("Thread (this=%p): getTid() is undefined before run()", this);
tid = -;
}
return tid;
}
#endif bool Thread::exitPending() const
{
Mutex::Autolock _l(mLock);
return mExitPending;
} }; // namespace android

http://androidxref.com/6.0.0_r1/xref/system/core/libutils/Threads.cpp

status_t Thread::run(const char* name, int32_tpriority, size_t stack)
{
Mutex::Autolock_l(mLock);
....
//如果mCanCallJava为真,则调用createThreadEtc函数,线程函数是_threadLoop。
//_threadLoop是Thread.cpp中定义的一个函数。
if(mCanCallJava) {
res = createThreadEtc(_threadLoop,this, name, priority,
stack,&mThread);
} else{
res = androidCreateRawThreadEtc(_threadLoop, this, name, priority,
stack,&mThread);
}

上面的mCanCallJava将线程创建函数的逻辑分为两个分支,虽传入的参数都有_threadLoop,但调用的函数却不同。先直接看mCanCallJava为true的这个分支 
Thread.h::createThreadEtc()

inline bool createThreadEtc(thread_func_tentryFunction,
void *userData,
const char*threadName = "android:unnamed_thread",
int32_tthreadPriority = PRIORITY_DEFAULT,
size_tthreadStackSize = 0,
thread_id_t*threadId = 0)
{
return androidCreateThreadEtc(entryFunction, userData, threadName,
threadPriority, threadStackSize,threadId) ? true : false;
}

它调用的是androidCreateThreadEtc函数

// gCreateThreadFn是函数指针,初始化时和mCanCallJava为false时使用的是同一个
//线程创建函数。
static android_create_thread_fn gCreateThreadFn= androidCreateRawThreadEtc;
int androidCreateThreadEtc(android_thread_func_tentryFunction,
void*userData,const char* threadName,
int32_tthreadPriority,size_t threadStackSize,
android_thread_id_t*threadId)
{
return gCreateThreadFn(entryFunction, userData, threadName,
threadPriority,threadStackSize, threadId);
}

androidCreateThreadEtc方法最终会调用CreateThreadFn方法,初始化时和mCanCallJava为false时使用的是同一个
线程创建函数,所以我们要看一下到底什么地方会修改这个mCanCallJava的值。答案就在AndroidRuntime调用startReg的地方,就有可能修改这个函数指针
AndroidRuntime.cpp

/*static*/ int AndroidRuntime::startReg(JNIEnv*env)
{
//这里会修改函数指针为javaCreateThreadEtc
androidSetCreateThreadFunc((android_create_thread_fn)javaCreateThreadEtc);
return ;
}

所以,如果mCanCallJava为true,则将调用javaCreateThreadEtc。 
AndroidRuntime.cpp

int AndroidRuntime::javaCreateThreadEtc(
android_thread_func_tentryFunction,
void* userData,
const char*threadName,
int32_tthreadPriority,
size_t threadStackSize,
android_thread_id_t* threadId)
{
void**args = (void**) malloc( * sizeof(void*));
intresult;
args[] = (void*) entryFunction;
args[] = userData;
args[] = (void*) strdup(threadName);
//调用的还是androidCreateRawThreadEtc,但线程函数却换成了javaThreadShell。
result= androidCreateRawThreadEtc(AndroidRuntime::javaThreadShell, args,
threadName, threadPriority,threadStackSize, threadId);
return result;
}

AndroidRuntime.cpp

http://androidxref.com/6.0.0_r1/xref/frameworks/base/core/jni/AndroidRuntime.cpp

int AndroidRuntime::javaThreadShell(void* args){
......
intresult;
//把这个线程attach到JNI环境中,这样这个线程就可以调用JNI的函数了
if(javaAttachThread(name, &env) != JNI_OK)
return -;
//调用实际的线程函数干活
result = (*(android_thread_func_t)start)(userData);
//从JNI环境中detach出来。
javaDetachThread();
free(name);
returnresult;
}

到这里,终于明白了mCanCallJava为true的目的:
1.在调用你的线程函数之前会attach到 JNI环境中,这样,你的线程函数就可以无忧无虑地使用JNI函数了。
2.线程函数退出后,它会从JNI环境中detach,释放一些资源。
进程退出前,dalvik虚拟机会检查是否有attach了,但是最后未detach的线程如果有,则会直接abort,这显然是不好的。

_threadLoop

还记得上面的代码

  if(mCanCallJava) {
res = createThreadEtc(_threadLoop,this, name, priority,
stack,&mThread);
} else{
res = androidCreateRawThreadEtc(_threadLoop, this, name, priority,
stack,&mThread);
}

尽管根据mCanCallJava不同会调用不同的函数,但是都是传入了_threadLoop,所以我们有必要分析这个方法。

int Thread::_threadLoop(void* user)
{
Thread* const self = static_cast<Thread*>(user);
sp<Thread> strong(self->mHoldSelf);
wp<Thread> weak(strong);
self->mHoldSelf.clear(); #if HAVE_ANDROID_OS
self->mTid = gettid();
#endif boolfirst = true; do {
bool result;
if(first) {
first = false;
//self代表继承Thread类的对象,第一次进来将调用readyToRun,看看是否准备好
self->mStatus = self->readyToRun();
result = (self->mStatus == NO_ERROR); if (result && !self->mExitPending) {
result = self->threadLoop();
}
}else {
/*
调用子类实现的threadLoop函数,注意这段代码运行在一个do-while循环中。
这表示即使我们的threadLoop返回了,线程也不一定会退出。
*/
result = self->threadLoop();
}
/*
线程退出的条件:
1)result 为false。这表明,如果子类在threadLoop中返回false,线程就可以
退出。这属于主动退出的情况,是threadLoop自己不想继续干活了,所以返回false。千万别写错threadLoop的返回值。
2)mExitPending为true,这个变量可由Thread类的requestExit函数设置,这种
情况属于被动退出,因为由外界强制设置了退出条件。
*/
if(result == false || self->mExitPending) {
self->mExitPending = true;
self->mLock.lock();
self->mRunning = false;
self->mThreadExitedCondition.broadcast();
self->mLock.unlock();
break;
}
strong.clear();
strong = weak.promote();
}while(strong != ); return ;
}

_threadLoop运行在一个循环中,它的返回值可以决定是否退出线程。

常用同步类

互斥类——Mutex
Mutex是互斥类,用于多线程访问同一个资源的时候,保证一次只能有一个线程能访问该资源。例如想象你在飞机上如厕,这时卫生间的信息牌上显示“有人”,你必须等里边的人出来后才可进去。这就是互斥的含义。

Thread.h::Mutex的声明和实现

inline Mutex::Mutex(int type, const char* name){
if(type == SHARED) {
//type如果是SHARED,则表明这个Mutex支持跨进程的线程同步
//在Audio系统和Surface系统中会经常见到这种用法
pthread_mutexattr_t attr;
pthread_mutexattr_init(&attr);
pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
pthread_mutex_init(&mMutex, &attr);
pthread_mutexattr_destroy(&attr);
} else {
pthread_mutex_init(&mMutex, NULL);
}
}
inline Mutex::~Mutex() {
pthread_mutex_destroy(&mMutex);
}
inline status_t Mutex::lock() {
return-pthread_mutex_lock(&mMutex);
}
inline void Mutex::unlock() {
pthread_mutex_unlock(&mMutex);
}
inline status_t Mutex::tryLock() {
return-pthread_mutex_trylock(&mMutex);
}

关于Mutex的使用,除了初始化外,最重要的是lock和unlock函数的使用,它们的用法如下:
要想独占卫生间,必须先调用Mutex的lock函数。这样,这个区域就被锁住了。如果这块区域之前已被别人锁住,lock函数则会等待,直到可以进入这块区域为止。系统保证一次只有一个线程能lock成功。
· 当你“方便”完毕,记得调用Mutex的unlock以释放互斥区域。这样,其他人的lock才可以成功返回。
· 另外,Mutex还提供了一个trylock函数,该函数只是尝试去锁住该区域,使用者需要根据trylock的返回值判断是否成功锁住了该区域。

AutoLock介绍
AutoLock类是定义在Mutex内部的一个类,Mutex的使用如下
· 显示调用Mutex的lock。
· 在某个时候要记住调用该Mutex的unlock。以上这些操作都必须一一对应,否则会出现“死锁”!充分利用了C++的构造和析构函数,可以达到不忘了释放锁的目的。
Thread.h Mutex::Autolock声明和实现

  classAutolock {
public:
//构造的时候调用lock
inline Autolock(Mutex& mutex) : mLock(mutex) { mLock.lock(); }
inline Autolock(Mutex* mutex) : mLock(*mutex) { mLock.lock(); }
//析构的时候调用unlock
inline ~Autolock() { mLock.unlock(); }
private:
Mutex& mLock;
};

AutoLock的用法很简单:
· 先定义一个Mutex,如 Mutex xlock;
· 在使用xlock的地方,定义一个AutoLock,如 AutoLock autoLock(xlock)。
由于C++对象的构造和析构函数都是自动被调用的,所以在AutoLock的生命周期内,xlock的lock和unlock也就自动被调用了,这样就省去了重复书写unlock的麻烦,而且lock和unlock的调用肯定是一一对应的,这样就绝对不会出错。

条件类——Condition
· 线程A做初始化工作,而其他线程比如线程B、C必须等到初始化工作完后才能工作,即线程B、C在等待一个条件,我们称B、C为等待者。
· 当线程A完成初始化工作时,会触发这个条件,那么等待者B、C就会被唤醒。触发这个条件的A就是触发者。
Thread.h::Condition的声明和实现

class Condition {
public:
enum {
PRIVATE = ,
SHARED =
}; Condition();
Condition(int type);//如果type是SHARED,表示支持跨进程的条件同步
~Condition();
//线程B和C等待事件,wait这个名字是不是很形象呢?
status_t wait(Mutex& mutex);
//线程B和C的超时等待,B和C可以指定等待时间,当超过这个时间,条件却还不满足,则退出等待
status_t waitRelative(Mutex& mutex, nsecs_t reltime);
//触发者A用来通知条件已经满足,但是B和C只有一个会被唤醒
voidsignal();
//触发者A用来通知条件已经满足,所有等待者都会被唤醒
voidbroadcast(); private:
#if defined(HAVE_PTHREADS)
pthread_cond_t mCond;
#else
void* mState;
#endif
}

声明很简单,定义也很简单

inline Condition::Condition() {
pthread_cond_init(&mCond, NULL);
}
inline Condition::Condition(int type) {
if(type == SHARED) {//设置跨进程的同步支持
pthread_condattr_t attr;
pthread_condattr_init(&attr);
pthread_condattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
pthread_cond_init(&mCond, &attr);
pthread_condattr_destroy(&attr);
} else{
pthread_cond_init(&mCond, NULL);
}
}
inline Condition::~Condition() {
pthread_cond_destroy(&mCond);
}
inline status_t Condition::wait(Mutex&mutex) {
return-pthread_cond_wait(&mCond, &mutex.mMutex);
}
inline status_tCondition::waitRelative(Mutex& mutex, nsecs_t reltime) {
#if defined(HAVE_PTHREAD_COND_TIMEDWAIT_RELATIVE)
structtimespec ts;
ts.tv_sec = reltime/;
ts.tv_nsec = reltime%;
return-pthread_cond_timedwait_relative_np(&mCond, &mutex.mMutex, &ts);
...... //有些系统没有实现POSIX的相关函数,所以不同系统需要调用不同的函数
#endif
}
inline void Condition::signal() {
pthread_cond_signal(&mCond);
}
inline void Condition::broadcast() {
pthread_cond_broadcast(&mCond);
}

可以看出,Condition的实现全是凭借调用了Raw API的pthread_cond_xxx函数。这里要重点说明的是,Condition类必须配合Mutex来使用。上面代码中,不论是wait、waitRelative、signal还是broadcast的调用,都放在一个Mutex的lock和unlock范围中,尤其是wait和waitRelative函数的调用,这是强制性的。

Condition类和Mutex类使用的例子,在Thread类的requestExitAndWait中就可以体现
Thread.cpp

status_t Thread::requestExitAndWait()
{
......
requestExit();//设置退出变量mExitPending为true
Mutex::Autolock_l(mLock);//使用Autolock,mLock被锁住
while(mRunning == true) {
/*
条件变量的等待,这里为什么要通过while循环来反复检测mRunning?
因为某些时候即使条件类没有被触发,wait也会返回。
*/
mThreadExitedCondition.wait(mLock);
} mExitPending = false;
//退出前,局部变量Mutex::Autolock _l的析构会被调用,unlock也就会被自动调用。
returnmStatus;
}

Thread.cpp

int Thread::_threadLoop(void* user)
{
Thread* const self =static_cast<Thread*>(user);
sp<Thread> strong(self->mHoldSelf);
wp<Thread> weak(strong);
self->mHoldSelf.clear(); do {
......
result= self->threadLoop();//调用子类的threadLoop函数
......
//如果mExitPending为true,则退出
if(result == false || self->mExitPending) {
self->mExitPending = true;
//退出前触发条件变量,唤醒等待者
self->mLock.lock();//lock锁住
//mRunning的修改位于锁的保护中。
self->mRunning = false;
self->mThreadExitedCondition.broadcast();
self->mLock.unlock();//释放锁
break;//退出循环,此后该线程函数会退出
}
......
}while(strong != ); return0;
}

原子操作函数 
所谓原子操作,就是该操作绝不会在执行完毕前被任何其他任务或事件打断,也就说,原子操作是最小的执行单位

static int g_flag = ; //全局变量g_flag
static Mutex lock ;//全局的锁
//线程1执行thread1
void thread1()
{
//g_flag递减,每次操作前锁住
lock.lock();
g_flag--;
lock.unlock();
}
//线程2中执行thread2函数
void thread2()
{
lock.lock();
g_flag++; //线程2对g_flag进行递增操作,每次操作前要取得锁
lock.unlock();
}

为什么需要Mutex来帮忙呢?因为g_flags++或者g_flags—操作都不是原子操作。从汇编指令的角度看,C/C++中的一条语句对应了数条汇编指令。以g_flags++操作为例,它生成的汇编指令可能就是以下三条:
· 从内存中取数据到寄存器。
· 对寄存器中的数据进行递增操作,结果还在寄存器中。
· 寄存器的结果写回内存。
这三条汇编指令,如果按正常的顺序连续执行,是没有问题的,但在多线程时就不能保证了。例如,线程1在执行第一条指令后,线程2由于调度的原因,抢先在线程1之前连续执行完了三条指令。这样,线程1继续执行指令时,它所使用的值就不是线程2更新后的值,而是之前的旧值。再对这个值进行操作便没有意义了。
在一般情况下,处理这种问题可以使用Mutex来加锁保护,但Mutex的使用比它所要保护的内容还复杂,例如,锁的使用将导致从用户态转入内核态,有较大的浪费。那么,有没有简便些的办法让这些加、减等操作不被中断呢?
Android提供了相关的原子操作函数。这里,有必要介绍一下各个函数的作用。
Atomic.h
注意该文件位置在system/core/include/cutils目录中

//原子赋值操作,结果是*addr=value
void android_atomic_write(int32_t value,volatile int32_t* addr);
//下面所有函数的返回值都是操作前的旧值
//原子加1和原子减1
int32_t android_atomic_inc(volatile int32_t*addr);
int32_t android_atomic_dec(volatile int32_t*addr);
//原子加法操作,value为被加数
int32_t android_atomic_add(int32_t value,volatile int32_t* addr);
//原子“与”和“或”操作
int32_t android_atomic_and(int32_t value,volatile int32_t* addr);
int32_t android_atomic_or(int32_t value,volatile int32_t* addr);
/*
条件交换的原子操作。只有在oldValue等于*addr时,才会把newValue赋值给*addr
这个函数的返回值须特别注意。返回值非零,表示没有进行赋值操作。返回值为零,表示
进行了原子操作。
*/
int android_atomic_cmpxchg(int32_t oldvalue,int32_t newvalue,
volatile int32_t*addr);

Android Framework中Thread类的更多相关文章

  1. Android Framework中的线程Thread及它的threadLoop方法

    当初跟踪Camera的代码中的时候一直追到了HAL层,而在Framework中的代码看见了许很多多的Thread.它们普遍的特点就是有一个threadLoop方法.依照字面的意思应该是这个线程能够循环 ...

  2. [置顶] Android开发之Thread类分析

    在我们Linux系统中创建线程函数为:pthread_create(),在Android中我们为线程封装了一个类Thread,实际调用的还是pthread_create() 当我们想创建线程的时候,只 ...

  3. Android开发之Thread类分析 (转载)

    转自:http://blog.csdn.net/llping2011/article/details/9706599 在我们Linux系统中创建线程函数为:pthread_create(),在Andr ...

  4. Java中Thread类的start()和run()的区别

    1.start()方法来启动线程,真正实现了多线程运行,这时无需等待run方法体代码执行完毕而直接继续执行下面的代码. 通 过调用Thread类的start()方法来启动一个线程,这时此线程是处于就绪 ...

  5. java中Thread类分析

    创建线程的方式有三种,一是创建Thread实例,二是实现Runnable接口,三是实现Callable接口,Runnable接口和Callable接口的区别是一个无返回值,一个有返回值:不管是Runn ...

  6. [Android Studio] Android Studio中查看类的继承关系

    转载自:http://blog.csdn.net/hyr83960944/article/details/38098091 查看类的继承关系的快捷键F4,在Android Studio常用快捷键这篇文 ...

  7. Android Studio中查看类的继承关系

    查看类的继承关系的快捷键F4.在Android Studio经常使用快捷键这篇文章中.有写了.今天主要是讲一些关于这个快捷键出来的界面的一些配置.这块功能相对偏冷一些,可能非常多人都会用不到.可是关于 ...

  8. Android Framework中的Application Framework层介绍

    Android的四层架构相比大家都很清楚,老生常谈的说一下分别为:Linux2.6内核层,核心库层,应用框架层,应用层.我今天重点介绍一下应用框架层Framework,其实也是我自己的学习心得. Fr ...

  9. Android开发中JavaBean类和序列化知识的理解

    原创文章,转载请注明出处:http://www.cnblogs.com/baipengzhan/p/6296121.html Android开发中,我们经常用到JavaBean类以及序列化的知识,但经 ...

随机推荐

  1. CSS链接使用伪类的顺序

    顺序为:link-visited-hover-active a:link {color: #FF0000} /* 未访问的链接 */ a:visited {color: #00FF00} /* 已访问 ...

  2. mysql两种备份方法总结:mysqldump 和 xtrabackup

    mysqldump工具基本使用 1. mysqldump [OPTIONS] database [tables…] 还原时库必须存在,不存在需要手动创建     --all-databases: 备份 ...

  3. C# wpf 列出文件夹所有文件

    在网上找了 cmd输入 dir "要列出的文件夹*.*" /a /b /s>"要输出的文件" 可以重定向把文件夹内容输出到文件 tree "要列 ...

  4. Spring基础09——Bean的自动装配

    1.XML配置的Bean自动装配 SpringIOC容器可以自动装配Bean,需要做的仅仅是在<bean>的autowire属性里指定自动装配的模式,而不需要手工去指定要装配的Bean,a ...

  5. Java并发——DCL问题

    转自:http://www.iteye.com/topic/875420 如果你搜索网上分析dcl为什么在java中失效的原因,都会谈到编译器会做优化云云,我相信大家看到这个一定会觉得很沮丧.很无助, ...

  6. Cron表达式 详解

    Cron表达式是一个字符串,字符串以5或6个空格隔开,分为6或7个域,每一个域代表一个含义,Cron有如下两种语法格式: (1) 7个域: Seconds Minutes Hours DayofMon ...

  7. php内置函数分析之array_combine()

    PHP_FUNCTION(array_combine) { HashTable *values, *keys; uint32_t pos_values = ; zval *entry_keys, *e ...

  8. TCP/IP基础总结性学习(7)

    确保 Web 安全的 HTTPS 在 HTTP 协议中有可能存在信息窃听或身份伪装等安全问题.使用 HTTPS 通信机制可以有效地防止这些问题. 一. HTTP 的缺点 HTTP 主要有这些不足,例举 ...

  9. css----动画(图片无限放大缩小)

    先给大家推荐animate.css库,里面有一些效果很不错的过度样式,不想自己写的也可以直接安装这个库来使用,如果不想安装这个库也可以去https://daneden.github.io/animat ...

  10. 【leetcode】525. Contiguous Array

    题目如下: 解题思路:这个题目可以这么做,遍历数组,如果元素是0,则count --:否则count ++:这样的话,每遍历到一个下标i,count的值就是0>i区间内0和1的差值.如果我们能找 ...