数论(lcm)
题意:求最小的lcm(a,b)的下标;
#include <bits/stdc++.h>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <iostream>
#include <cstdio>
#include <string>
#include <stdio.h>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <string.h>
#include <vector>
#define ME(x , y) memset(x , y , sizeof(x))
#define SF(n) scanf("%d" , &n)
#define rep(i , n) for(int i = 0 ; i < n ; i ++)
#define INF 0x3f3f3f3f3f3f3f3fLL
#define mod 1000000007
#define PI acos(-1)
using namespace std;
typedef long long ll ;
const int N = 1e7 + ;
int p[N] , n; int main()
{
int x , flaga , flagb ;//值,左下标,右下标
ll minv ;//最小lcm值
while(~scanf("%d" , &n))
{
memset(p , , sizeof(p));//标记数组
minv = INF ;
for(int i = ; i <= n ; i++)
{
scanf("%d" , &x);
if(p[x] && x < minv)//出现了两次且小于原lcm,更新
{
minv = x ;
flaga = p[x];
flagb = i ;
}
p[x] = i ;//标记该数出现
}
for(int i = ; i < N && i < minv ; i++)//遍历1-1e7+5数
{
ll v = ;
int pos ;
for(int j = i ; j < N && j < minv ; j+=i)//成倍数的遍历。
{
if(p[j])//该数出现
{
if(v==)//第一个数
{
v = j ;
pos = p[j];
}
else if(v / i * j < minv)//第二个数出现,且小于原lcm更新。
{
minv = v / i * j ;
flaga = pos ;
flagb = p[j];
}
else
{
break ;
}
}
}
}
if(flaga > flagb) swap(flaga , flagb);
cout << flaga << " " << flagb << endl;
} return ;
}
数论(lcm)的更多相关文章
- bzoj5105 晨跑 数论lcm
“无体育,不清华”.”每天锻炼一小时,健康工作五十年,幸福生活一辈子”在清华,体育运动绝对是同学们生活中 不可或缺的一部分.为了响应学校的号召,模范好学生王队长决定坚持晨跑.不过由于种种原因,每天都早 ...
- 数论---lcm和gcd
cd即最大公约数,lcm即最小公倍数. 首先给出a×b=gcd×lcm 证明:令gcd(a,b)=k,a=xk,b=yk,则a×b=xykk,而lcm=xyk,所以ab=gcd*lcm. 所以求lcm ...
- HDU 4497 GCD and LCM (数论)
题意:三个数x, y, z. 给出最大公倍数g和最小公约数l.求满足条件的x,y,z有多少组. 题解:设n=g/l n=p1^n1*p2^n2...pn^nk (分解质因数 那么x = p1^x1 * ...
- 简单数论总结1——gcd与lcm
并不重要的前言 最近学习了一些数论知识,但是自己都不懂自己到底学了些什么qwq,在这里把知识一并总结起来. 也不是很难的gcd和lcm 显而易见的结论: 为什么呢? 根据唯一分解定理: a和b都可被分 ...
- 数论入门2——gcd,lcm,exGCD,欧拉定理,乘法逆元,(ex)CRT,(ex)BSGS,(ex)Lucas,原根,Miller-Rabin,Pollard-Rho
数论入门2 另一种类型的数论... GCD,LCM 定义\(gcd(a,b)\)为a和b的最大公约数,\(lcm(a,b)\)为a和b的最小公倍数,则有: 将a和b分解质因数为\(a=p1^{a1}p ...
- Pairs Forming LCM (LightOJ - 1236)【简单数论】【质因数分解】【算术基本定理】(未完成)
Pairs Forming LCM (LightOJ - 1236)[简单数论][质因数分解][算术基本定理](未完成) 标签: 入门讲座题解 数论 题目描述 Find the result of t ...
- Least Common Multiple (HDU - 1019) 【简单数论】【LCM】【欧几里得辗转相除法】
Least Common Multiple (HDU - 1019) [简单数论][LCM][欧几里得辗转相除法] 标签: 入门讲座题解 数论 题目描述 The least common multip ...
- GCD and LCM HDU 4497 数论
GCD and LCM HDU 4497 数论 题意 给你三个数x,y,z的最大公约数G和最小公倍数L,问你三个数字一共有几种可能.注意123和321算两种情况. 解题思路 L代表LCM,G代表GCD ...
- [HDOJ5584]LCM Walk(数论,规律)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5584 给一个坐标(ex, ey),问是由哪几个点走过来的.走的规则是x或者y加上他们的最小公倍数lcm ...
- HDU5584 LCM Walk 数论
LCM Walk Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Su ...
随机推荐
- 构建游戏开发的大数据项目的流程demo图
- pycharm快捷键的使用、内存管理、变量、数据类型、注释相关笔记
目录 pycharm快捷键的使用 变量 python内存管理 小整数池 引用计数 垃圾回收机制 循环引用 变量的三种打印形式 数字类型 字符串 注释 pycharm快捷键的使用 ctrl+c复制,默认 ...
- 解决GitHub加载不出图片问题
解决方法: 复制 raw.githubusercontent.com 去 https://www.ipaddress.com 搜索,把给出的IP地址存储到 host 文件中: 如 199.232.28 ...
- LeetCode--064--最小路径和
给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明:每次只能向下或者向右移动一步. 示例: 输入:[ [1,3,1], [1,5,1], ...
- Java——IO
[Java流式输入/输出原理]
- POJ 1432 Decoding Morse Sequences (DP)
Decoding Morse Sequences 题目链接: http://acm.hust.edu.cn/vjudge/contest/129783#problem/D Description Be ...
- WinSetupFromUSB - 超简单制作多合一系统安装启动U盘的工具 (支持Win/PE/Linux启动盘)
很多同学都喜欢将电脑凌乱不堪的系统彻底重装以获得一个"全新的开始",但你会发现如今很多电脑都已经没有光驱了,因此制作一个U盘版的系统安装启动盘备用是非常必要的. 我们之前推荐过 I ...
- 关于Java泛型实现原理的思考与一般用法示例总结
面向对象的一个重要目标是对代码重用的支持.支持这个目标的一个重要机制就是泛型机制.在1.5版本之前,java并没有直接支持泛型实现,泛型编程的实现时通过使用继承的一些基本概念来完成的. 这种方式的局限 ...
- Php.ini 中文注释详细
Php.ini 中文注释 这个文件控制了PHP许多方面的观点.为了让PHP读取这个文件,它必须被命名为 ; ´php.ini´.PHP 将在这些地方依次查找该文件:当前工作目录:环境变量PHPRC ...
- mysql-c++连接
1.mysql-c++连接MySQL :: Download Connector/C++ https://dev.mysql.com/downloads/connector/cpp/ 1-1VS201 ...