【LeetCode】714、买卖股票的最佳时机含手续费
Best Time to Buy and Sell Stock with Transaction Fee
题目等级:Medium
题目描述:
Your are given an array of integers prices, for which the i-th element is the price of a given stock on day i; and a non-negative integer fee representing a transaction fee.
You may complete as many transactions as you like, but you need to pay the transaction fee for each transaction. You may not buy more than 1 share of a stock at a time (ie. you must sell the stock share before you buy again.)
Return the maximum profit you can make.
Example 1:
Input: prices = [1, 3, 2, 8, 4, 9], fee = 2
Output: 8
Explanation: The maximum profit can be achieved by:
Buying at prices[0] = 1
Selling at prices[3] = 8
Buying at prices[4] = 4
Selling at prices[5] = 9
The total profit is ((8 - 1) - 2) + ((9 - 4) - 2) = 8.
题意:给定一个整数数组 prices,其中第 i 个元素代表了第 i 天的股票价格 ;非负整数 fee 代表了交易股票的手续费用。可以无限次地完成交易,但是每次交易都需要付手续费。返回获得利润的最大值。
解题思路(动态规划):
终于到了买卖股票的最后一道题。。。
有了上一题(冷冻期)的经验,这道题实际不难了,同样是无数次情况的一个变形,只不过每次需要交一定的费用。实际很类似,有了上一题状态的定义,稍加修改就是这个题了。
同样的,每一天是一个阶段,每一阶段的决策就是:每天决定买还是卖,而每一天有两个状态:手里持有股票、手里没有股票。
和上题一样,仍然定义两个状态变量:
sell[i]:表示在第i天结束后手里没有股票的情况下,获得的最大收益。
hold[i]:表示在第i天结束后手里仍然持有股票的情况下获得的最大收益。
其状态转移也不难分析:
如果当天结束时仍然持有股票,那么有两种可能:(1)今天刚买的,那么说明前一天结束的时候手里没有股票了,即hold[i]=sell[i-1]-prices[i]. (2)以前就买了,今天啥也没干,也没买也没卖,换句话说就是前一天结束的时候手里已经有了,即:hold[i]=hold[i-1]。
如果当天结束的时候手里没有股票,那么说明也有两种可能:(1)今天刚卖了, 也就是说前一天结束的时候手里还是持有股票的,而今天卖的时候还有交纳费用,所以:sell[i]=hold[i-1]+prices[i]-fee.(2)以前就卖了,今天啥也没干,那说明前一天结束的时候手里已经没有股票了,所以:sell[i]=sell[i-1].
综合起来,就可以得到状态转移方程:
hold[i]=max(sell[i-1]-prices[i],hold[i-1])
sell[i]=max(hold[i-1]+prices[i]-fee,sell[i-1])
初始条件还是一样的,第一天的时候不可能卖出,一定会买入,这实际上还是贪心思想的一种体现,第一天可以买一定是会买的,在处理不限次数的交易时,已经证明了这种贪心思想的正确性,所以sell[0]=0,而hold[0]=-prices[0].
最后,根据以上分析给出以下代码:
public int maxProfit(int[] prices, int fee) {
if(prices==null || prices.length==0)
return 0;
int len=prices.length;
int[] sell=new int[len];
int[] hold=new int[len];
sell[0]=0;
hold[0]=-prices[0];
for(int i=1;i<len;i++){
sell[i]=Math.max(sell[i-1],hold[i-1]+prices[i]-fee);
hold[i]=Math.max(sell[i-1]-prices[i],hold[i-1]);
}
return sell[len-1];
}
}
时间复杂度:O(n),空间复杂度:O(2n)
总结
本题是买卖股票6道题的最后一题了,做一个简单的总结,这一系列题目是动态规划和贪心思想的运用。我们可以看到:实际上在冷冻期和需要费用的这两道题目中定义的两个状态sell和hold是可以解决所有的不限制交易次数的题目的,包括我们的无数次交易也可以通过这两个状态来写出转移方程,因为不管条件如何变,只要没有限制交易次数,每天的状态都还是这两个。而限制了交易次数的,状态就会复杂一些,就需要一个二维状态,这也就是在允许交易K次的题目中我们给出的方法。
因此,到此为止,不管股票买卖这道题再给出什么条件,我们都可以做了,因为限制次数的和不限制次数的两种情况下的状态我们都清楚了,只需要根据不同的条件写出转移方程就可以了。
两次交易:【LeetCode】123、买卖股票的最佳时机 III
K次交易:【LeetCode】188、买卖股票的最佳时机 IV
无数次交易:【LeetCode】122、买卖股票的最佳时机 II
无数次交易含冷冻期:【LeetCode】309、最佳买卖股票时机含冷冻期
无数次交易含交易费用:【LeetCode】714、买卖股票的最佳时机含手续费
【LeetCode】714、买卖股票的最佳时机含手续费的更多相关文章
- Java实现 LeetCode 714 买卖股票的最佳时机含手续费(动态规划 || 迭代法)
714. 买卖股票的最佳时机含手续费 给定一个整数数组 prices,其中第 i 个元素代表了第 i 天的股票价格 :非负整数 fee 代表了交易股票的手续费用. 你可以无限次地完成交易,但是你每次交 ...
- LeetCode——714. 买卖股票的最佳时机含手续费.
给定一个整数数组 prices,其中第 i 个元素代表了第 i 天的股票价格 :非负整数 fee 代表了交易股票的手续费用. 你可以无限次地完成交易,但是你每次交易都需要付手续费.如果你已经购买了一个 ...
- leetcode 714. 买卖股票的最佳时机含手续费
继承leetcode123以及leetcode309的思路,,但应该也可以写成leetcode 152. 乘积最大子序列的形式 class Solution { public: int maxProf ...
- Leetcode之动态规划(DP)专题-714. 买卖股票的最佳时机含手续费(Best Time to Buy and Sell Stock with Transaction Fee)
Leetcode之动态规划(DP)专题-714. 买卖股票的最佳时机含手续费(Best Time to Buy and Sell Stock with Transaction Fee) 股票问题: 1 ...
- [Swift]LeetCode714. 买卖股票的最佳时机含手续费 | Best Time to Buy and Sell Stock with Transaction Fee
Your are given an array of integers prices, for which the i-th element is the price of a given stock ...
- 每日一题-——LeetCode(121)买卖股票的最佳时机
题目描述: 给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格.如果你最多只允许完成一笔交易(即买入和卖出一支股票),设计一个算法来计算你所能获取的最大利润.注意你不能在买入股票前卖出股票 ...
- Leetcode 188.买卖股票的最佳时机IV
买卖股票的最佳时机IV 给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格. 设计一个算法来计算你所能获取的最大利润.你最多可以完成 k 笔交易. 注意: 你不能同时参与多笔交易(你必 ...
- LeetCode《买卖股票的最佳时机》系列题目,最详解
目录 说在前面 引例:只能交易一次 一.动态数组定义 二.状态转移方程 三.初始化 四.优化 无限制买卖 一.动态数组定义 二.状态转移方程 三.初始化 四.优化 交易 2 次,最大利润? 一.动态数 ...
- Leetcode——121. 买卖股票的最佳时机
题目描述:买卖股票的最佳时机 题目要求求解能获得最大利润的方式? 可以定一个二维数组 d [ len ] [ 2 ] ,其中d[ i ][ 0 ] 表示前i天可以获得的最大利润:d[ i ][ 1 ] ...
随机推荐
- POJ3415Common Substrings(后缀自动机)
A substring of a string T is defined as: T( i, k)= TiTi +1... Ti+k -1, 1≤ i≤ i+k-1≤| ...
- poj1952 BUY LOW, BUY LOWER[线性DP(统计不重复LIS方案)]
如题.$N \leqslant 5000$. 感觉自己思路永远都是弯弯绕绕的..即使会做也会被做繁掉..果然还是我太菜了. 递减不爽,先倒序输入算了.第一问做个LIS没什么说的.第二问统计个数,考虑什 ...
- Andrid Studio Gradle sync failed: A problem occurred configuring project ':app' 解决方法
Android Studio中进行Gradle sync 时出现了这个错误,Android Studio 出错提示是 Gradle sync failed: A problem occurred co ...
- 【GitHub】命令行操作
提交文件 本地修改之后:git add . 提交到暂存区 commit一下:git commit -m "xxx" -m表示信息,不填无法commit 提交到远程仓库: ...
- select和FD_SET等
转自:http://blog.csdn.net/cstarbl/article/details/7645298 select函数用于在非阻塞中,当一个套接字或一组套接字有信号时通知你,系统提供sele ...
- php curl方法 支持 http https get post cookie
//请求方式curl封装 @author Geyaru QQ 534208139 参数1:访问的URL,参数2:post数据(不填则为GET),参数3:提交的$cookies,参数4:是否返回$coo ...
- python-Django框架
常用命令 生成应用 python manage.py start app(app_name) 开启服务器 python manage.py runserver 0.0.0.0:8001 声称以及修改数 ...
- 四叉树的js实现
基于 https://gamedevelopment.tutsplus.com/tutorials/quick-tip-use-quadtrees-to-detect-likely-collision ...
- C++入门经典-例3.17-使用while循环进行计算
1:代码如下: // 3.17.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include <iostream> usin ...
- 第八周总结&实验报告六
总结:这周主要是学习异常的使用,已经怎么解决异常,总的来说学习的还是有点难度的,因为前面的知识还需要时间去弥补,这门课程还是要加油的学习! 这周主要所学: 一.异常 1.异常是导致程序中断运行的一种指 ...