'''
Created on Apr 20, 2017 @author: P0079482
'''
import tensorflow as tf
#获取一层神经网络边上的权重,并将这个权重的L2正则化损失加入名称为'losses'的集合中
def get_weight(shape,lambda1):
#生成一个变量
var = tf.Variable(tf.random_normal(shape),dtype=tf.float32)
#add_to_collection函数将这个新生成变量的L2正则化损失项加入集合
#这个函数的第一个参数'losses'是集合的名字,第二个参数是要加入这个集合的内容
tf.add_to_collection('losses',tf.contrib.layers.l2_regularizer(lambda1)(var))
#返回生成的变量
return var x = tf.placeholder(tf.float32,shape=(None,2))
y_= tf.placeholder(tf.float32,shape=(None,1))
batch_size=8
#定义了每一层网络中节点的个数、
layer_dimension=[2,10,10,10,1]
#神经网络的层数
n_layers=len(layer_dimension)
#这个变量维护前向传播时最深层的节点,开始的时候就是输入层
cur_layer=x
#当前层的节点个数
in_dimension=layer_dimension[0] #通过一个循环来生成5层全连接的神经网络结构
for i in range(1,n_layers):
#layer_dimension[i]为下一层的节点个数
out_dimension=layer_dimension[i]
#生成当前层中权重的变量,并将这个变量的L2正则化损失加入计算图上的集合
weight=get_weight([in_dimension,out_dimension],0.001)
bias=tf.Variable(tf.constant(0.1,shape=[out_dimension]))
#使用ReLU激活函数
cur_layer=tf.nn.relu(tf.matmul(cur_layer,weight)+bias)
#进入下一层之前将下一层的节点个数更新为当前层节点个数
in_dimension=layer_dimension[i] #在定义神经网络前向传播的同时已经将所有的L2正则化损失加入了图上的集合
#这里只需要计算刻画模型在训练数据上表现的损失函数
mse_loss=tf.reduce_mean(tf.square(y_-cur_layer)) #将均方误差损伤函数加入损伤集合
tf.add_to_collection('losses',mse_loss) #get_collection返回一个列表,这个列表是所有这个集合中的元素。在这个样例中
#这些元素就是损失函数的不同部分,将它们加起来就可以得到最终的损失函数
loss=tf.add_n(tf.get_collection('losses'))

79、tensorflow计算一个五层神经网络的正则化损失系数、防止网络过拟合、正则化的思想就是在损失函数中加入刻画模型复杂程度的指标的更多相关文章

  1. TensorFlow学习笔记——深层神经网络的整理

    维基百科对深度学习的精确定义为“一类通过多层非线性变换对高复杂性数据建模算法的合集”.因为深层神经网络是实现“多层非线性变换”最常用的一种方法,所以在实际中可以认为深度学习就是深度神经网络的代名词.从 ...

  2. [DeeplearningAI笔记]卷积神经网络2.3-2.4深度残差网络

    4.2深度卷积网络 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 [残差网络]--He K, Zhang X, Ren S, et al. Deep Residual Learni ...

  3. 用TensorFlow搭建一个万能的神经网络框架(持续更新)

    我一直觉得TensorFlow的深度神经网络代码非常困难且繁琐,对TensorFlow搭建模型也十分困惑,所以我近期阅读了大量的神经网络代码,终于找到了搭建神经网络的规律,各位要是觉得我的文章对你有帮 ...

  4. 基于tensorflow搭建一个神经网络

    一,tensorflow的简介 Tensorflow是一个采用数据流图,用于数值计算的 开源软件库.节点在图中表示数字操作,图中的线 则表示在节点间相互联系的多维数据数组,即张量 它灵活的架构让你可以 ...

  5. TensorFlow笔记-08-过拟合,正则化,matplotlib 区分红蓝点

    TensorFlow笔记-08-过拟合,正则化,matplotlib 区分红蓝点 首先提醒一下,第7讲的最后滑动平均的代码已经更新了,代码要比理论重要 今天是过拟合,和正则化,本篇后面可能或更有兴趣, ...

  6. 改善深层神经网络(三)超参数调试、Batch正则化和程序框架

    1.超参数调试: (1)超参数寻找策略: 对于所有超参数遍历求最优参数不可取,因为超参数的个数可能很多,可选的数据过于庞大. 由于最优参数周围的参数也可能比较好,所以可取的方法是:在一定的尺度范围内随 ...

  7. [DeeplearningAI笔记]改善深层神经网络1.4_1.8深度学习实用层面_正则化Regularization与改善过拟合

    觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.4 正则化(regularization) 如果你的神经网络出现了过拟合(训练集与验证集得到的结果方差较大),最先想到的方法就是正则化(re ...

  8. Tensorflow计算模型 —— 计算图

    转载自:http://blog.csdn.net/john_xyz/article/details/69053626 Tensorflow是一个通过计算图的形式来表述计算的编程系统,计算图也叫数据流图 ...

  9. 神经网络损失函数中的正则化项L1和L2

    神经网络中损失函数后一般会加一个额外的正则项L1或L2,也成为L1范数和L2范数.正则项可以看做是损失函数的惩罚项,用来对损失函数中的系数做一些限制. 正则化描述: L1正则化是指权值向量w中各个元素 ...

随机推荐

  1. php面试专题---1、php中变量存储及引用的原理

    php面试专题---1.php中变量存储及引用的原理 一.总结 一句话总结: 查看变量的存储结构可以安装xdebug扩展,用xdebug_debug_zval()方法,不推荐使用memory_get_ ...

  2. (2)C#连sqlite

    创建控制台core3.0版 vs里引入 Microsoft.EntityFrameworkCore.Tools Microsoft.EntityFrameworkCore.Sqlite 一.逆向工程 ...

  3. JarvisOJ 逆向Writeup

    1. 爬楼梯 先运行apk,查看具体的功能 爬一层楼是可以点击的,爬到了,看FLAG是不可以点击的.我们可以大致的了解到到了具体的楼层才可以看到flag,多次打开软件,楼层数目是随机的. 用APKID ...

  4. day 52协程

    协程进程线程: # 进程 启动多个进程 进程之间是由操作系统负责调用 # 线程 启动多个线程 真正被CPU执行的最小单位实际是线程 # 开启一个线程 创建一个线程 寄存器 堆栈 # 关闭一个线程 # ...

  5. USACO 6.1 章节

    Postal Vans 题目大意 4*n的网格,要经过所有点的有向有环,不重复经过点的路径总数 n<=1000 题解 显然 插头dp 以4为切面 问题是,会发现 超精度 解决呢要么实现高精度,要 ...

  6. 洛谷P1219 八皇后

    题目描述 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行.每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子. 上面的布局可以用序列2 4 6 1 3 ...

  7. 哈希算法和字典类的定义,DataSet中数据遍历的几种方法

    哈希算法的基本操作: 1.  哈希表(HashTable)简述   在.NET Framework中,Hashtable是System.Collections命名空间提供的一个容器,用于处理和表现类似 ...

  8. python外星人入侵(游戏开发)

    实现的项目要求: 1.外星人游戏添加飞船上下移动功能: 2.为游戏添加背景音乐: 3.在玩家得分.最高得分.玩家等级前添加"Score"."High Score" ...

  9. with cats as pets get cataracts and macular degeneration

    I really enjoyed this talk, optimistic and helpful. May I offer a small but perhaps helpful bit of k ...

  10. WPF绑定のRelativeSource

    在WPF绑定的时候,指定绑定源时,有一种办法是使用RelativeSource. 这种办法的意思是指当前元素和绑定源的位置关系. 第一种关系: Self 举一个最简单的例子:在一个StackPanel ...