题目链接

(Luogu) https://www.luogu.org/problem/P4859

(bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=3622

题解

我依然啥都不会啊……

先给\(A,B\)数组从小到大排序。

考虑容斥,设\(f[j]\)表示钦定了\(j\)个满足\(A>B\), 所有钦定方案的方案数总和。

这个怎么算?dp算。设\(dp[i][j]\)表示前\(i\)个的\(f[j]\), 然后发现转移的时候并不知道之前选的那些没有钦定的有几个比当前的大。

怎么办?转换思路,我们考虑先选出钦定的\(B\), 不考虑剩下未钦定的。那么很容易列出方程: \(dp[i][j]=dp[i-1][j]+dp[i-1][j-1]\times (t-i+1)\), 其中\(t\)为\(a_i\)大于\(B\)序列中的多少个数。

最后\(f[j]=dp[n][j]\times (n-j)!\), 完美解决。

容斥怎么办?思考组合意义或者二项式反演,总之最后是一个式子\(g[i]=\sum^n_{j=i}(-1)^{j-i}{j\choose i}f[j]\), 其中\(g[i]\)表示恰好有\(i\)对\(A>B\)的方案数。

时间复杂度\(O(n^2)\).

代码

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cassert>
#include<iostream>
#include<algorithm>
#define llong long long
using namespace std; inline int read()
{
int x=0; bool f=1; char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=0;
for(; isdigit(c);c=getchar()) x=(x<<3)+(x<<1)+(c^'0');
if(f) return x;
return -x;
} const int N = 2000;
const int P = 1e9+9;
int a[N+3],b[N+3];
llong dp[N+3][N+3];
llong f[N+3];
llong fact[N+3],finv[N+3];
int n,m; llong quickpow(llong x,llong y)
{
llong cur = x,ret = 1ll;
for(int i=0; y; i++)
{
if(y&(1ll<<i)) {y-=(1ll<<i); ret = ret*cur%P;}
cur = cur*cur%P;
}
return ret;
}
llong mulinv(llong x) {return quickpow(x,P-2);}
llong comb(llong x,llong y) {return x<0||y<0||x<y ? 0ll : fact[x]*finv[y]%P*finv[x-y]%P;} int main()
{
fact[0] = 1ll; for(int i=1; i<=N; i++) fact[i] = fact[i-1]*i%P;
finv[N] = quickpow(fact[N],P-2); for(int i=N-1; i>=0; i--) finv[i] = finv[i+1]*(i+1)%P;
scanf("%d%d",&n,&m);
if((n+m)&1) {printf("0"); return 0;}
m = (n+m)>>1;
for(int i=1; i<=n; i++) scanf("%d",&a[i]);
for(int i=1; i<=n; i++) scanf("%d",&b[i]);
sort(a+1,a+n+1); sort(b+1,b+n+1);
dp[0][0] = 1ll;
for(int i=1; i<=n; i++)
{
int t = lower_bound(b+1,b+n+1,a[i])-b-1;
for(int j=0; j<=i; j++)
{
dp[i][j] = dp[i-1][j];
if(j>0 && t-j+1>0) {dp[i][j] = (dp[i][j]+dp[i-1][j-1]*(t-j+1))%P;}
}
}
for(int i=0; i<=n; i++) f[i] = dp[n][i]*fact[n-i]%P;
llong ans = 0ll;
for(int i=m; i<=n; i++)
{
llong tmp = f[i]*comb(i,m);
if((i-m)&1) {ans = (ans-tmp+P)%P;}
else {ans = (ans+tmp)%P;}
}
printf("%lld\n",ans);
return 0;
}

BZOJ 3622 Luogu P4859 已经没有什么好害怕的了 (容斥原理、DP)的更多相关文章

  1. P4859 已经没有什么好害怕的了(dp+二项式反演)

    P4859 已经没有什么好害怕的了 啥是二项式反演(转) 如果你看不太懂二项式反演(比如我) 那么只需要记住:对于某两个$g(i),f(i)$ ---------------------------- ...

  2. BZOJ 3622: 已经没有什么好害怕的了 [容斥原理 DP]

    3622: 已经没有什么好害怕的了 题意:和我签订契约,成为魔法少女吧 真·题意:零食魔女夏洛特的结界里有糖果a和药片b各n个,两两配对,a>b的配对比b>a的配对多k个学姐就可能获胜,求 ...

  3. luogu P4859 已经没有什么好害怕的了

    嘟嘟嘟 题中给的\(k\)有点别扭,我们转换成\(a > b\)的对数是多少,这个用二元一次方程解出来是\(\frac{n + k}{2}\). 然后考虑dp,令\(dp[i][j]\)表示前\ ...

  4. BZOJ 2152 / Luogu P2634 [国家集训队]聪聪可可 (点分治/树形DP)

    题意 一棵树,给定边权,求满足两点之间的路径上权值和为3的倍数的点对数量. 分析 点分治板题,对每个重心求子树下面的到根的距离模3分别为0,1,2的点的个数就行了. O(3nlogn)O(3nlogn ...

  5. bzoj 3622 DP + 容斥

    LINK 题意:给出n,k,有a,b两种值,a和b间互相配对,求$a>b$的配对组数-b>a的配对组数恰好等于k的情况有多少种. 思路:粗看会想这是道容斥组合题,但关键在于如何得到每个a[ ...

  6. BZOJ 3052/Luogu P4074 [wc2013]糖果公园 (树上带修莫队)

    题面 中文题面,难得解释了 BZOJ传送门 Luogu传送门 分析 树上带修莫队板子题... 开始没给分块大小赋初值T了好一会... CODE #include <bits/stdc++.h&g ...

  7. BZOJ 3931 / Luogu P3171 [CQOI2015]网络吞吐量 (最大流板题)

    题面 中文题目,不解释: BZOJ传送门 Luogu传送门 分析 这题建图是显然的,拆点后iii和i′i'i′连容量为吞吐量的边,根据题目要求,111和nnn的吞吐量看作∞\infty∞. 然后用di ...

  8. BZOJ 3894 / Luogu P4313 文理分科 (拆点最小割)

    题面 中文题面- BZOJ 传送门 Luogu 传送门 分析 这道题类似于BZOJ 3774 最优选择,然后这里有一篇博客写的很好- Today_Blue_Rainbow's Blog 应该看懂了吧- ...

  9. BZOJ 2039 / Luogu P1791 [2009国家集训队]employ人员雇佣 (最小割)

    题面 BZOJ传送门 Luogu传送门 分析 考虑如何最小割建图,因为这仍然是二元关系,我们可以通过解方程来确定怎么建图,具体参考论文 <<浅析一类最小割问题 湖南师大附中 彭天翼> ...

随机推荐

  1. .Net Core Grpc Consul 实现服务注册 服务发现 负载均衡

    本文是基于..net core grpc consul 实现服务注册 服务发现 负载均衡(二)的,很多内容是直接复制过来的,..net core grpc consul 实现服务注册 服务发现 负载均 ...

  2. python_0基础开始_day08

    第八节 1,文件操作 文件操作目的: 持久化,永久存储 (数据库之前 -- 文件操作就是代替数据库) 读 1,找到文件位 2,双击打开 3,进行一些操作 4,关闭文件 open() 打开,通过pyth ...

  3. 小白学习django第四站-关联数据库

    使用mysql连接django首先要配置好相关环境 首先在setting.py配置数据库信息(需要现在mysql中创建一个数据库) 在setting.py那个目录的__init__.py文件中写入 之 ...

  4. Hive 教程(五)-参数配置

    配置基本操作 hive> set; 查看所有配置hive> set key: 查看某个配置hive> set key value: 设置某个配置 我们可以看到一些 hadoop 的配 ...

  5. LinkedList实现基于LRU算法的缓存

    LinkedList实现基于LRU算法的缓存 2015年08月07日 18:18:45 秦江波 阅读数 2068 文章标签: java算法linkedlist缓存LRU更多 分类专栏: Java   ...

  6. Get MySQL这5个优化技巧

    一个成熟的数据库架构并不是一开始设计就具备高可用.高伸缩等特性的,它是随着用户量的增加,基础架构才逐渐完善.这篇文章主要谈谈MySQL数据库在发展周期中所面临的问题及优化方案,暂且抛开前端应用不说,大 ...

  7. mysql中case when then end的含义和用法

    参见这篇博客:https://blog.csdn.net/rongtaoup/article/details/82183743 case when then else end 语句用于查询满足多种条件 ...

  8. react 不同环境配置不同域名

    npm eject 先将配置文件暴露出来 将scripts中的build文件复制一份,改名为你需要的名字 将其中的 process.env.NODE_ENV 赋值为你需要的环境 在package.js ...

  9. MySQL--高性能MySQL笔记一

    链接管理与安全性: 每个客户端连接都在服务器进程中拥有一个线程. MySQL5.5以及更新的版本提供了一个API,支持线程池插件,可以使用池中少量的线程服务大量的链接. 认证基于用户名.密码和原始主机 ...

  10. 关于ASP.NET中fileupload控件的缺点

    一.首我来理一理“FileUpload”控件的工作大概原理: FileUpload 控件显示一个文本框控件和一个浏览按钮,使用户可以选择客户端上的文件并将它上载到 Web 服务器.用户通过在控件的文本 ...