struct edge(int u,v,cost;};

bool comp(const edge& e1,const edge& e2)
{
    return e1.cost<e2.cost;
}

edge es[MAX_E];
int V,E;

//下面是自定义好的并查集的实现
int par[MAX_N];//父亲
int rank[MAX_N];//树的高度
void init(int n)
{
    for(int i=0;i<n;i++)
    {
        par[i]=i;
        rank[i]=0;
    }
}

int find(int x)//查询树的根
{
    if(par[x]==x)
    {
        return x;
    }
    else 
    {
        return par[x]=find(par[x]);//递归查找
    }
}

void unite(int x,int y)//合并x和y所在的集合
{
    x=find(x);
    y=find(y);
    if(x==y)return;
    if(rank[x]<rank[y])
    {
        par[x]=y;//如果x的高度小于y的高度,则x插到y的下层(减少树的退化)
    }
    else 
    {
        par[y]=x;//否则,y插入到x的下层
        if(rank[x]==rank[y])rank[x]++;
    }
}

bool same(int x,int y)
{
    return find(x)==find(y);
}

//最小生成树的算法:

int kruskal()
{
    sort(es,es+E,comp);//按照边的权值从小到大排序,接下来就可以用贪心思想
    init(V);
    int res=0;
    for(int i=0;i<E;i++)
    {
        edge e=es[i];
        if(!same(e.u,e.v))
        {
            unite(e.u,e.v);//如果该边的两端不连通就合并它们
            res+=e.cost;
        }
    }
    return res;
}

最小生成树问题:kruskal算法的更多相关文章

  1. 最小生成树问题---Prim算法与Kruskal算法实现(MATLAB语言实现)

    2015-12-17晚,复习,甚是无聊,阅<复杂网络算法与应用>一书,得知最小生成树问题(Minimum spanning tree)问题.记之. 何为树:连通且不含圈的图称为树. 图T= ...

  2. 最小生成树问题------------Prim算法(TjuOj_1924_Jungle Roads)

    遇到一道题,简单说就是找一个图的最小生成树,大概有两种常用的算法:Prim算法和Kruskal算法.这里先介绍Prim.随后贴出1924的算法实现代码. Prim算法 1.概览 普里姆算法(Prim算 ...

  3. 最小生成树问题---Prim算法学习

    一个具有n个节点的连通图的生成树是原图的最小连通子集,它包含了n个节点和n-1条边.若砍去任一条边,则生成树变为非连通图:若增加一条边,则在图中形成一条回路.本文所写的是一个带权的无向连通图中寻求各边 ...

  4. Kruskal算法及其类似原理的应用——【BZOJ 3654】tree&&【BZOJ 3624】[Apio2008]免费道路

    首先让我们来介绍Krukal算法,他是一种用来求解最小生成树问题的算法,首先把边按边权排序,然后贪心得从最小开始往大里取,只要那个边的两端点暂时还没有在一个联通块里,我们就把他相连,只要这个图里存在最 ...

  5. 【算法】Kruskal算法(解决最小生成树问题) 含代码实现

    Kruskal算法和Prim算法一样,都是求最小生成树问题的流行算法. 算法思想: Kruskal算法按照边的权值的顺序从小到大查看一遍,如果不产生圈或者重边,就把当前这条边加入到生成树中. 算法的正 ...

  6. 最小生成树问题:Kruskal算法 AND Prim算法

    Kruskal算法: void Kruskal ( ) {     MST = { } ;                           //边的集合,最初为空集     while( Edge ...

  7. pta7-20 畅通工程之局部最小花费问题(Kruskal算法)

    题目链接:https://pintia.cn/problem-sets/15/problems/897 题意:给出n个城镇,然后给出n×(n-1)/2条边,即每两个城镇之间的边,包含起始点,终点,修建 ...

  8. 权重最小生成树的思想与Kruskal算法

    晚上做携程的笔试题,附加题考到了权重最小生成树.OMG,就在开考之前,我还又看过一遍这内容,可因为时间太紧,也从来没有写过代码,就GG了.又吃了眼高手低的亏.这不,就好好总结一下,亡羊补牢. 权重最小 ...

  9. 最小生成树——kruskal算法

    kruskal和prim都是解决最小生成树问题,都是选取最小边,但kruskal是通过对所有边按从小到大的顺序排过一次序之后,配合并查集实现的.我们取出一条边,判断如果它的始点和终点属于同一棵树,那么 ...

  10. 最小生成数之Kruskal算法

    描述 随着小Hi拥有城市数目的增加,在之间所使用的Prim算法已经无法继续使用了--但是幸运的是,经过计算机的分析,小Hi已经筛选出了一些比较适合建造道路的路线,这个数量并没有特别的大. 所以问题变成 ...

随机推荐

  1. [HDU517] 小奇的集合

    题目链接 显然有贪心每次选择最大的两个数来做. 于是暴力地把最大的两个数调整到非负(暴力次数不超过1e5),接下来使用矩阵乘法即可. \[ \begin{pmatrix} B'\\S'\\T' \en ...

  2. C++ Primer 回炉重铸(一)

    过去学C++语法都是用的这本C++Primer第五版 说实话,这本书应该是业界用的最多的一本类似于C++语法的百科全书了.. 但是感觉自己学了这么长时间的C++,语法层次还是不够牢固. 比如templ ...

  3. MateBook 换内存条

    欢迎关注微信公众号:猫的尾巴有墨水 为啥要拆MateBook D笔记本? 最近这个Windows 10更新后,内存暴增,每次禁用windows update和同步服务模块后,依然不能彻底解决内存爆炸的 ...

  4. six库 解决python2的项目如何能够完全迁移到python3

    six库 解决python2的项目如何能够完全迁移到python3 SIX是用于python2与python3兼容的库. 它存在的目的是为了拥有无需修改即可在Python 2和Python 3上同时工 ...

  5. Django重写用户模型报错has no attribute 'USERNAME_FIELD'

    目录 Django重写用户模型报错has no attribute 'USERNAME_FIELD' 在重写用户模型时报错:AttributeError: type object 'UserProfi ...

  6. @Resource与@Autowired注解的区别踩坑者入

    一.写本博文的原因 有些童鞋搞不为什么要用@Resource或者@Autowired,咱们一起研究下 @Resource默认按照名称方式进行bean匹配,@Autowired默认按照类型方式进行bea ...

  7. Date对象中的方法

    特殊说明:设置时间的方法,虽然W3C说明传参的范围,在开发过程中,传入的参数不在该范围也是可以的.例如: var t = new Date(), d = t.getDate(); //当天时间往前推2 ...

  8. ValueError: day is out of range for month

    日期超出范围. 我当时使用datetime模块生成时间格式数据,手误传错参数导致的结果.所以,好好检查数据就可解决问题. 如下: # 将字符串类型数据转化成时间结构数据# 原想写成如下代码import ...

  9. cmd窗口颜色设置

    color  02    第一个数字是背景颜色,第二个是文字颜色.

  10. Codeforces 1000 组合数可行线段倒dp 边双联通缩点求树直径

    A /*Huyyt*/ #include<bits/stdc++.h> #define mem(a,b) memset(a,b,sizeof(a)) using namespace std ...