用处:求解同余线性方程组

inv:逆元

一堆物品

3个3个分剩2个

5个5个分剩3个

7个7个分剩2个

问这个物品有多少个

5*7*inv(5*7,  3) % 3  =  1

3*7*inv(3*7,  5) % 5  =  1

3*5*inv(3*5,  7) % 7  =  1

然后两边同乘你需要的数

2 * 5*7*inv(5*7,  3) % 3  =  2

3 * 3*7*inv(3*7,  5) % 5  =  3

2 * 3*5*inv(3*5,  7) % 7  =  2

a = 2 * 5*7*inv(5*7,  3)     b = 3 * 3*7*inv(3*7,  5)     c = 2 * 3*5*inv(3*5,  7)

那么

a % 3 = 2    b % 5 = 3    c % 7 = 2  答案就是a+b+c

因为

a%5 = a%7 = 0 因为a是5的倍数,也是7的倍数    b%3 = b%7 = 0 因为b是3的倍数,也是7的倍数    c%3 = c%5 = 0 因为c是3的倍数,也是5的倍数

所以

(a + b + c) % 3 = (a % 3) + (b % 3) + (c % 3) = 2 + 0 + 0 = 2

(a + b + c) % 5 = (a % 5) + (b % 5) + (c % 5) = 0 + 3 + 0 = 3

(a + b + c) % 7 = (a % 7) + (b % 7) + (c % 7) = 0 + 0 + 2 = 2

每105个就是一个答案(105 = 3 * 5 * 7)

根据计算,最小的答案等于233,233%105 = 23

//n个方程:x=a[i](mod m[i]) (0<=i<n)
LL china(int n, LL *a, LL *m){
LL M = , ret = ;
for(int i = ; i < n; i ++) M *= m[i];
for(int i = ; i < n; i ++){
LL w = M / m[i];
ret = (ret + w * inv(w, m[i]) * a[i]) % M;
}
return (ret + M) % M;
}

两两互质代码

例题:poj 1006

人自出生起就有体力,情感和智力三个生理周期,分别为23,28和33天。一个周期内有一天为峰值,在这一天,人在对应的方面(体力,情感或智力)表现最好。通常这三个周期的峰值不会是同一天。现在给出三个日期,分别对应于体力,情感,智力出现峰值的日期。然后再给出一个起始日期,要求从这一天开始,算出最少再过多少天后三个峰值同时出现。

#include<cstdio>
typedef long long LL;
const int N = + ;
void ex_gcd(LL a, LL b, LL &x, LL &y, LL &d){
if (!b) {d = a, x = , y = ;}
else{
ex_gcd(b, a % b, y, x, d);
y -= x * (a / b);
}
}
LL inv(LL t, LL p){//如果不存在,返回-1
LL d, x, y;
ex_gcd(t, p, x, y, d);
return d == ? (x % p + p) % p : -;
}
LL china(int n, LL *a, LL *m){//中国剩余定理
LL M = , ret = ;
for(int i = ; i < n; i ++) M *= m[i];
for(int i = ; i < n; i ++){
LL w = M / m[i];
ret = (ret + w * inv(w, m[i]) * a[i]) % M;
}
return (ret + M) % M;
}
int main(){
LL p[], r[], d, ans, MOD = ;
int cas = ;
p[] = ; p[] = ; p[] = ;
while(~scanf("%I64d%I64d%I64d%I64d", &r[], &r[], &r[], &d) && (~r[] || ~r[] || ~r[] || ~d)){
ans = ((china(, r, p) - d) % MOD + MOD) % MOD;
printf("Case %d: the next triple peak occurs in %I64d days.\n", ++cas, ans ? ans : );
} }

solve one

如果两两不保证互质的话

#include<cstdio>
#include<algorithm>
using namespace std;
typedef long long LL;
typedef pair<LL, LL> PLL;
PLL linear(LL A[], LL B[], LL M[], int n) {//求解A[i]x = B[i] (mod M[i]),总共n个线性方程组
LL x = , m = ;
for(int i = ; i < n; i ++) {
LL a = A[i] * m, b = B[i] - A[i]*x, d = gcd(M[i], a);
if(b % d != ) return PLL(, -);//答案不存在,返回-1
LL t = b/d * inv(a/d, M[i]/d)%(M[i]/d);
x = x + m*t;
m *= M[i]/d;
}
x = (x % m + m ) % m;
return PLL(x, m);//返回的x就是答案,m是最后的lcm值
}

两两不互质

例题:poj 2891

给出k个模方程组:x mod ai = ri。求x的最小正值。如果不存在这样的x,那么输出-1.

#include<cstdio>
#include<algorithm>
using namespace std;
typedef long long LL;
typedef pair<LL, LL> PLL;
LL a[], b[], m[];
LL gcd(LL a, LL b){
return b ? gcd(b, a%b) : a;
}
void ex_gcd(LL a, LL b, LL &x, LL &y, LL &d){
if (!b) {d = a, x = , y = ;}
else{
ex_gcd(b, a % b, y, x, d);
y -= x * (a / b);
}
}
LL inv(LL t, LL p){//如果不存在,返回-1
LL d, x, y;
ex_gcd(t, p, x, y, d);
return d == ? (x % p + p) % p : -;
}
PLL linear(LL A[], LL B[], LL M[], int n) {//求解A[i]x = B[i] (mod M[i]),总共n个线性方程组
LL x = , m = ;
for(int i = ; i < n; i ++) {
LL a = A[i] * m, b = B[i] - A[i]*x, d = gcd(M[i], a);
if(b % d != ) return PLL(, -);//答案,不存在,返回-1
LL t = b/d * inv(a/d, M[i]/d)%(M[i]/d);
x = x + m*t;
m *= M[i]/d;
}
x = (x % m + m ) % m;
return PLL(x, m);//返回的x就是答案,m是最后的lcm值
}
int main(){
int n;
while(scanf("%d", &n) != EOF){
for(int i = ; i < n; i ++){
a[i] = ;
scanf("%d%d", &m[i], &b[i]);
}
PLL ans = linear(a, b, m, n);
if(ans.second == -) printf("-1\n");
else printf("%I64d\n", ans.first);
}
}

solve two

grandson定理的更多相关文章

  1. 【HDU 3037】Saving Beans Lucas定理模板

    http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #i ...

  2. Mittag-Leffler定理,Weierstrass因子分解定理和插值定理

    Mittag-Leffler定理    设$D\subset\mathbb C$为区域,而$\{a_{n}\}$为$D$中互不相同且无极限点的点列,那么对于任意给定的一列自然数$\{k_{n}\}$, ...

  3. 【转】Polya定理

    转自:http://endlesscount.blog.163.com/blog/static/82119787201221324524202/ Polya定理 首先记Sn为有前n个正整数组成的集合, ...

  4. hdu 4704 Sum (整数和分解+快速幂+费马小定理降幂)

    题意: 给n(1<n<),求(s1+s2+s3+...+sn)mod(1e9+7).其中si表示n由i个数相加而成的种数,如n=4,则s1=1,s2=3.                  ...

  5. poj1006Biorhythms(同余定理)

    转自:http://blog.csdn.net/dongfengkuayue/article/details/6461298 本文转自head for better博客,版权归其所有,代码系本人自己编 ...

  6. CF451E Devu and Flowers (隔板法 容斥原理 Lucas定理 求逆元)

    Codeforces Round #258 (Div. 2) Devu and Flowers E. Devu and Flowers time limit per test 4 seconds me ...

  7. 大组合数:Lucas定理

    最近碰到一题,问你求mod (p1*p2*p3*……*pl) ,其中n和m数据范围是1~1e18 , l ≤10 , pi ≤ 1e5为不同的质数,并保证M=p1*p2*p3*……*pl ≤ 1e18 ...

  8. SPOJ HIGH Highways ——Matrix-Tree定理 高斯消元

    [题目分析] Matrix-Tree定理+高斯消元 求矩阵行列式的值,就可以得到生成树的个数. 至于证明,可以去看Vflea King(炸树狂魔)的博客 [代码] #include <cmath ...

  9. 洛谷 P2735 电网 Electric Fences Label:计算几何--皮克定理

    题目描述 在本题中,格点是指横纵坐标皆为整数的点. 为了圈养他的牛,农夫约翰(Farmer John)建造了一个三角形的电网.他从原点(0,0)牵出一根通电的电线,连接格点(n,m)(0<=n& ...

随机推荐

  1. bootstrap-table export导出问题

    引入方式如上图,首先是,bootstrap.min.js,其他 Bootstrap Table 官网 bootstrap-table.min.js  // 表格 bootstrap-table-zh- ...

  2. 题目1.A乘以B

    看我没骗你吧 —— 这是一道你可以在10秒内完成的题:给定两个绝对值不超过100的整数A和B,输出A乘以B的值. 1实验代码 #include<stdio.h>int main(void) ...

  3. nodejs 中 接受前端的数据请求的处理

    前台 ---->  后台 后台要接受 前台的数据,只能通过 http 但是 前台接受 后台的数据有  from   ajax    jsonp nodejs 给我们提供了模块 url 模块,可以 ...

  4. 微信小程序 API 基础

    其实还有一些组件,没有提,因为那些组件跟 API 的功能差不多,API 可能比他会更好一点: 具体可见官方文档 基础: 判断接口是否可用:wx.canIUse(a) a 代表:接口名字 返回值:布尔 ...

  5. webpack配置之webpack.config.js文件配置

    webpack配置之webpack.config.js文件配置 webpack.config.js webpack resolve  1.总是手动的输入webpack的输入输出文件路径,是一件非常繁琐 ...

  6. 配置 setting镜像在nexus私服上下载

    在你的本地仓库上 setting文件中配置,一旦nexus服务关闭是无法下载的 1 配置nexus镜像 <mirror> <id>central1</id> < ...

  7. delphi DLL image 动态绘图 句柄处理

    在调用DLL 动态在T Image 绘图时,传入  Image.Canvas.Handle 后,却总是绘不上,有时偶尔能绘上,却没搞清原因,而同样的代码,传入窗体的 Handle ,绘图却正常. 经过 ...

  8. golang 标准库 sync.Map 中 nil 和 expunge 区别

    本文不是 sync.Map 源码详细解读,而是聚焦 entry 的不同状态,特别是 nil 状态和 expunge 状态的区分. entry 是 sync.Map 存放值的结构体,其值有三种,分别为 ...

  9. mysql 锁超时

    对一个别人正在读写的表执行DDL操作,经常需要先锁表,但是这个表正在被人执行读写操作,那么就会报:Lock wait timeout 类的错误. 通过MDB实例详情页面的进程管理可以看到类似如下的情况 ...

  10. 【工具】Fiddler使用教程

    目录 概述 2 Fiddler是做什么的,能帮助我们做什么? 2 工作原理 2 代理模式 3 使用场景--提供的功能 3 界面及使用介绍 3 常用功能 10 HOST配置 10 前后端接口连调--Co ...