grandson定理
用处:求解同余线性方程组
inv:逆元
一堆物品
3个3个分剩2个
5个5个分剩3个
7个7个分剩2个
问这个物品有多少个
5*7*inv(5*7, 3) % 3 = 1
3*7*inv(3*7, 5) % 5 = 1
3*5*inv(3*5, 7) % 7 = 1
然后两边同乘你需要的数
2 * 5*7*inv(5*7, 3) % 3 = 2
3 * 3*7*inv(3*7, 5) % 5 = 3
2 * 3*5*inv(3*5, 7) % 7 = 2
令
a = 2 * 5*7*inv(5*7, 3) b = 3 * 3*7*inv(3*7, 5) c = 2 * 3*5*inv(3*5, 7)
那么
a % 3 = 2 b % 5 = 3 c % 7 = 2 答案就是a+b+c
因为
a%5 = a%7 = 0 因为a是5的倍数,也是7的倍数 b%3 = b%7 = 0 因为b是3的倍数,也是7的倍数 c%3 = c%5 = 0 因为c是3的倍数,也是5的倍数
所以
(a + b + c) % 3 = (a % 3) + (b % 3) + (c % 3) = 2 + 0 + 0 = 2
(a + b + c) % 5 = (a % 5) + (b % 5) + (c % 5) = 0 + 3 + 0 = 3
(a + b + c) % 7 = (a % 7) + (b % 7) + (c % 7) = 0 + 0 + 2 = 2
每105个就是一个答案(105 = 3 * 5 * 7)
根据计算,最小的答案等于233,233%105 = 23
//n个方程:x=a[i](mod m[i]) (0<=i<n)
LL china(int n, LL *a, LL *m){
LL M = , ret = ;
for(int i = ; i < n; i ++) M *= m[i];
for(int i = ; i < n; i ++){
LL w = M / m[i];
ret = (ret + w * inv(w, m[i]) * a[i]) % M;
}
return (ret + M) % M;
}
两两互质代码
例题:poj 1006
人自出生起就有体力,情感和智力三个生理周期,分别为23,28和33天。一个周期内有一天为峰值,在这一天,人在对应的方面(体力,情感或智力)表现最好。通常这三个周期的峰值不会是同一天。现在给出三个日期,分别对应于体力,情感,智力出现峰值的日期。然后再给出一个起始日期,要求从这一天开始,算出最少再过多少天后三个峰值同时出现。
#include<cstdio>
typedef long long LL;
const int N = + ;
void ex_gcd(LL a, LL b, LL &x, LL &y, LL &d){
if (!b) {d = a, x = , y = ;}
else{
ex_gcd(b, a % b, y, x, d);
y -= x * (a / b);
}
}
LL inv(LL t, LL p){//如果不存在,返回-1
LL d, x, y;
ex_gcd(t, p, x, y, d);
return d == ? (x % p + p) % p : -;
}
LL china(int n, LL *a, LL *m){//中国剩余定理
LL M = , ret = ;
for(int i = ; i < n; i ++) M *= m[i];
for(int i = ; i < n; i ++){
LL w = M / m[i];
ret = (ret + w * inv(w, m[i]) * a[i]) % M;
}
return (ret + M) % M;
}
int main(){
LL p[], r[], d, ans, MOD = ;
int cas = ;
p[] = ; p[] = ; p[] = ;
while(~scanf("%I64d%I64d%I64d%I64d", &r[], &r[], &r[], &d) && (~r[] || ~r[] || ~r[] || ~d)){
ans = ((china(, r, p) - d) % MOD + MOD) % MOD;
printf("Case %d: the next triple peak occurs in %I64d days.\n", ++cas, ans ? ans : );
} }
solve one
如果两两不保证互质的话
#include<cstdio>
#include<algorithm>
using namespace std;
typedef long long LL;
typedef pair<LL, LL> PLL;
PLL linear(LL A[], LL B[], LL M[], int n) {//求解A[i]x = B[i] (mod M[i]),总共n个线性方程组
LL x = , m = ;
for(int i = ; i < n; i ++) {
LL a = A[i] * m, b = B[i] - A[i]*x, d = gcd(M[i], a);
if(b % d != ) return PLL(, -);//答案不存在,返回-1
LL t = b/d * inv(a/d, M[i]/d)%(M[i]/d);
x = x + m*t;
m *= M[i]/d;
}
x = (x % m + m ) % m;
return PLL(x, m);//返回的x就是答案,m是最后的lcm值
}
两两不互质
例题:poj 2891
给出k个模方程组:x mod ai = ri。求x的最小正值。如果不存在这样的x,那么输出-1.
#include<cstdio>
#include<algorithm>
using namespace std;
typedef long long LL;
typedef pair<LL, LL> PLL;
LL a[], b[], m[];
LL gcd(LL a, LL b){
return b ? gcd(b, a%b) : a;
}
void ex_gcd(LL a, LL b, LL &x, LL &y, LL &d){
if (!b) {d = a, x = , y = ;}
else{
ex_gcd(b, a % b, y, x, d);
y -= x * (a / b);
}
}
LL inv(LL t, LL p){//如果不存在,返回-1
LL d, x, y;
ex_gcd(t, p, x, y, d);
return d == ? (x % p + p) % p : -;
}
PLL linear(LL A[], LL B[], LL M[], int n) {//求解A[i]x = B[i] (mod M[i]),总共n个线性方程组
LL x = , m = ;
for(int i = ; i < n; i ++) {
LL a = A[i] * m, b = B[i] - A[i]*x, d = gcd(M[i], a);
if(b % d != ) return PLL(, -);//答案,不存在,返回-1
LL t = b/d * inv(a/d, M[i]/d)%(M[i]/d);
x = x + m*t;
m *= M[i]/d;
}
x = (x % m + m ) % m;
return PLL(x, m);//返回的x就是答案,m是最后的lcm值
}
int main(){
int n;
while(scanf("%d", &n) != EOF){
for(int i = ; i < n; i ++){
a[i] = ;
scanf("%d%d", &m[i], &b[i]);
}
PLL ans = linear(a, b, m, n);
if(ans.second == -) printf("-1\n");
else printf("%I64d\n", ans.first);
}
}
solve two
grandson定理的更多相关文章
- 【HDU 3037】Saving Beans Lucas定理模板
http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #i ...
- Mittag-Leffler定理,Weierstrass因子分解定理和插值定理
Mittag-Leffler定理 设$D\subset\mathbb C$为区域,而$\{a_{n}\}$为$D$中互不相同且无极限点的点列,那么对于任意给定的一列自然数$\{k_{n}\}$, ...
- 【转】Polya定理
转自:http://endlesscount.blog.163.com/blog/static/82119787201221324524202/ Polya定理 首先记Sn为有前n个正整数组成的集合, ...
- hdu 4704 Sum (整数和分解+快速幂+费马小定理降幂)
题意: 给n(1<n<),求(s1+s2+s3+...+sn)mod(1e9+7).其中si表示n由i个数相加而成的种数,如n=4,则s1=1,s2=3. ...
- poj1006Biorhythms(同余定理)
转自:http://blog.csdn.net/dongfengkuayue/article/details/6461298 本文转自head for better博客,版权归其所有,代码系本人自己编 ...
- CF451E Devu and Flowers (隔板法 容斥原理 Lucas定理 求逆元)
Codeforces Round #258 (Div. 2) Devu and Flowers E. Devu and Flowers time limit per test 4 seconds me ...
- 大组合数:Lucas定理
最近碰到一题,问你求mod (p1*p2*p3*……*pl) ,其中n和m数据范围是1~1e18 , l ≤10 , pi ≤ 1e5为不同的质数,并保证M=p1*p2*p3*……*pl ≤ 1e18 ...
- SPOJ HIGH Highways ——Matrix-Tree定理 高斯消元
[题目分析] Matrix-Tree定理+高斯消元 求矩阵行列式的值,就可以得到生成树的个数. 至于证明,可以去看Vflea King(炸树狂魔)的博客 [代码] #include <cmath ...
- 洛谷 P2735 电网 Electric Fences Label:计算几何--皮克定理
题目描述 在本题中,格点是指横纵坐标皆为整数的点. 为了圈养他的牛,农夫约翰(Farmer John)建造了一个三角形的电网.他从原点(0,0)牵出一根通电的电线,连接格点(n,m)(0<=n& ...
随机推荐
- 图的普里姆(Prim)算法求最小生成树
关于图的最小生成树算法------普里姆算法 首先我们先初始化一张图: 设置两个数据结构来分别代表我们需要存储的数据: lowcost[i]:表示以i为终点的边的最小权值,当lowcost[i]=0说 ...
- Oracle Mysql MSSql 三种数据库 随机查询 条 语句
1. Oracle,随机查询查询语句-20条 select * from ( select * from 表名 order by dbms_random.value ) where rownum ...
- LeetCode_1114.按顺序打印(多线程)
LeetCode_1114 LeetCode-1114.按顺序打印 我们提供了一个类: public class Foo { public void one() { print("one&q ...
- Mybaits二级缓存的使用与配置
什么是延迟加载 resultMap中的association和collection标签具有延迟加载的功能. 延迟加载的意思是说,在关联查询时,利用延迟加载,先加载主信息.使用关联信息时再去加载关联信 ...
- Python基础(函数部分)
写在前面 加勒比海盗今天上映! 一.函数的基本概念 - 函数是什么? 函数,就是一个'锤子',一个具有特定功能的'锤子',使用者可以在适当的时候使用这个'锤子',而不用再去从头做一个'锤子':即可以 ...
- Cloudera-JDBC-Driver-for-Impala
Cloudera-JDBC-Driver-for-Impala-Install-Guide-2-5-5.pdf https://github.com/FlowerBirds/flowerbirds.g ...
- spring-mvc 3.* 多视图解析配置实例 ContentNegotiatingViewResolver
一.起因 从spring 3.1.0升级到spring 3.2.0时,配置文件servlet.xml中出错. 错误信息: java.lang.String cannot be cast to ...
- windows下简单安装postgres
目前版本是PostgreSQL 9.6,它经过以下平台认证: 32位Windows Windows 7,8和10 Windows 2008 Server 64位Windows Windows 7,8和 ...
- bigdata数据分析(二):关闭防火墙&安装telnet
先检查CentOS7.0是否已经安装以下两个安装包:telnet-server.xinetd.命令如下: rpm -qa telnet-server rpm -qa xinetd 如果没有安装,则先安 ...
- Java基础之 多线程
一.创建多线程程序的第一种方式: 继承(extends) Thread类 Thread类的子类: MyThread //1.创建一个Thread类的子类 public class MyThread e ...