CSU 1552 Friends(二分图 + 米勒测试)
题目链接:http://acm.csu.edu.cn/csuoj/problemset/problem?pid=1552
Description
On an alien planet, every extraterrestrial is born with a number. If the sum of two numbers is a prime number, then two extraterrestrials can be friends. But every extraterrestrial can only has at most one friend. You are given all number of the extraterrestrials, please determining the maximum number of friend pair.
Input
There are several test cases.
Each test start with positive integers N(1 ≤ N ≤ 100), which means there are N extraterrestrials on the alien planet.
The following N lines, each line contains a positive integer pi ( 2 ≤ pi ≤10^18),indicate the i-th extraterrestrial is born with pi number.
The input will finish with the end of file.
Output
For each the case, your program will output maximum number of friend pair.
Sample Input
3
2
2
3 4
2
5
3
8
Sample Output
1
2
Hint
Source
题意:
给你n个数,两个数相加为素数的时候,就可以成为朋友,选过的数字不能重复选择。
题解:
2分图最大匹配问题,和米勒测试。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <string>
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <sstream>
#include <algorithm>
using namespace std;
#define pb push_back
#define mp make_pair
#define ms(a, b) memset((a), (b), sizeof(a))
//#define LOCAL
#define eps 0.0000001
#define LNF (1<<60)
typedef long long LL;
const int inf = 0x3f3f3f3f;
const int maxn = +;
const int mod = 1e9+;
LL a[maxn];
bool Map[maxn][maxn], vis[maxn];
int lin[maxn];
LL big_rand(LL m)
{
LL x = rand();
x*=rand();
if(x<) x-=x;
return x%=m;
}
LL mod_mul(LL x, LL y, LL n)
{
if(x == || y == ) return ;
return (((x&)*y)%n+(mod_mul(x>>, y, n)<<)%n)%n;
}
LL mod_exp(LL x, LL y, LL n)
{
LL ret = ;
while(y){
if(y&) ret = mod_mul(ret, x, n);
x = mod_mul(x, x, n);
y >>= ;
}
return ret;
}
bool Miller_Rabbin(LL n)
{
LL i, j, x, m, k;
if(n==) return true;
if(n<|| !(n&)) return false;
m = n - ;k = ;
while(!(m&)) m >>= , k++;
for(i=;i<;i++){
x = big_rand(n-) + ;
x = mod_exp(x, m, n);
if(x == ) continue;
for(j = ;j<k;j++){
if(x==n-) break;
x = mod_mul(x, x, n);
}
if(j>=k) return false;
}
return true;
}
bool dfs(int x, int n){
for(int j = ;j<=n;j++){
if(Map[x][j]&&!vis[j]){
vis[j] = ;
if(lin[j]== || dfs(lin[j], n)){
lin[j] = x;
return ;
}
}
}
return ;
}
int main()
{
#ifdef LOCAL
freopen("input.txt", "r", stdin);
// freopen("output.txt", "w", stdout);
#endif // LOCAL int n;
while(~scanf("%d", &n)){
ms(Map, );
for(int i=;i<=n;i++) scanf("%lld", &a[i]);
for(int i=;i+<=n;i++){
for(int j=i+;j<=n;j++){
if(Miller_Rabbin(a[i]+a[j])){
Map[i][j] = Map[j][i] = ;
}
}
}
int ans = ;
ms(lin, );
for(int i=;i<=n;i++){
ms(vis, );
if(dfs(i, n)) ans++;
}
printf("%d\n", ans/);
}
return ;
}
将出2分图讲解,和米勒测试。未完待续。。XD
CSU 1552 Friends(二分图 + 米勒测试)的更多相关文章
- csu 1552: Friends 二分图 + Miller_Rabin
http://acm.csu.edu.cn/csuoj/problemset/problem?pid=1552 把那n个数写两次,分成相同的两堆,判断相加是质数的,连一条边,然后找最大匹配,ans = ...
- csu 1552(米勒拉宾素数测试+二分图匹配)
1552: Friends Time Limit: 3 Sec Memory Limit: 256 MBSubmit: 723 Solved: 198[Submit][Status][Web Bo ...
- Project Euler 41 Pandigital prime( 米勒测试 + 生成全排列 )
题意:如果一个n位数恰好使用了1至n每个数字各一次,我们就称其为全数字的.例如,2143就是一个4位全数字数,同时它恰好也是一个素数. 最大的全数字的素数是多少? 思路: 最大全排列素数可以从 n = ...
- Project Euler 27 Quadratic primes( 米勒测试 + 推导性质 )
题意: 欧拉发现了这个著名的二次多项式: f(n) = n2 + n + 41 对于连续的整数n从0到39,这个二次多项式生成了40个素数.然而,当n = 40时402 + 40 + 41 = 40( ...
- CSU 1552: Friends 图论匹配+超级大素数判定
1552: Friends Time Limit: 3 Sec Memory Limit: 256 MBSubmit: 163 Solved: 34[Submit][Status][Web Boa ...
- hdu2138 How many prime numbers 米勒测试
hdu2138 How many prime numbers #include <bits/stdc++.h> using namespace std; typedef long long ...
- 二分图最大匹配:匈牙利算法的python实现
二分图匹配是很常见的算法问题,一般用匈牙利算法解决二分图最大匹配问题,但是目前网上绝大多数都是C/C++实现版本,没有python版本,于是就用python实现了一下深度优先的匈牙利算法,本文使用的是 ...
- POJ Pseudoprime numbers( Miller-Rabin素数测试 )
链接:传送门 题意:题目给出费马小定理:Fermat's theorem states that for any prime number p and for any integer a > 1 ...
- 如何判断一个数是否为素数(zt)
怎么判断一个数是否为素数? 笨蛋的作法: bool IsPrime(unsigned n){ if (n<2) { //小于2的数即不是合数也不是素数 throw 0; ...
随机推荐
- 【openstf】自己的云测平台——mac安装openstf
openstf的github地址:https://github.com/openstf/stf 上图可以清晰看出openstf的使用场景和效果 openstf是一个web应用程序,用于远程调试智能 ...
- jmeter逻辑控制详解(1)
逻辑控制器 Jmeter提供了多种逻辑控制器,下面进行讲解说明: 1.Simple Controller 简单控制器是最基本的控制器,对jmeter测试运行没有任何影响,可以将某些请求归集在一个简单控 ...
- Trailing Zeroes (III) LightOJ - 1138 不找规律-理智推断-二分
其实有几个尾零代表10的几次方但是10=2*510^n=2^n*5^n2增长的远比5快,所以只用考虑N!中有几个5就行了 代码看别人的: https://blog.csdn.net/qq_422797 ...
- [19/05/07-星期二] JDBC(Java DataBase Connectivity)_CLOB(存储大量的文本数据)与BLOB(存储大量的二进制数据)
一. CLOB(Character Large Object ) – 用于存储大量的文本数据 – 大字段有些特殊,不同数据库处理的方式不一样,大字段的操作常常是以流的方式来处理的.而非一般的字段,一次 ...
- GCD and LCM HDU 4497 数论
GCD and LCM HDU 4497 数论 题意 给你三个数x,y,z的最大公约数G和最小公倍数L,问你三个数字一共有几种可能.注意123和321算两种情况. 解题思路 L代表LCM,G代表GCD ...
- CSRF verification failed. Request aborted.错误解决办法
在Django项目的页面,提交form表单POST请求时,会出现报错:CSRF verification failed. Request aborted. 需要在form表单中加:{% csrf_to ...
- for循环延伸
经典面试题解析: for(var i = 1 ; i < 5 ; i++){ console.log(i) } //1 2 3 4 ------------------------------- ...
- sqlserver 高版本迁移到低版本
奇葩事不少, 这不, 得把 sqlserver 2014 迁移到 2012 开始以为用备份再还原的方法就可以, 谁知道最终兼容性的问题无法解决(低版本不兼容高版本备份的文件, 即便在高版本中选择了兼 ...
- vue函数防抖和节流
Vue函数防抖和节流https://zhuanlan.zhihu.com/p/72363385 <template> <div> <input type='text' v ...
- Java中的集合详解及代码测试
1:对象数组 (1)数组既可以存储基本数据类型,也可以存储引用类型.它存储引用类型的时候的数组就叫对象数组. 2:集合(Collection) (1)集合的由来 我们学习的是Java -- 面向对象 ...