[SDOI2011]消防

题目描述

某个国家有n个城市,这n个城市中任意两个都连通且有唯一一条路径,每条连通两个城市的道路的长度为zi(zi<=1000)。

这个国家的人对火焰有超越宇宙的热情,所以这个国家最兴旺的行业是消防业。由于政府对国民的热情忍无可忍(大量的消防经费开销)可是却又无可奈何(总统竞选的国民支持率),所以只能想尽方法提高消防能力。

现在这个国家的经费足以在一条边长度和不超过s的路径(两端都是城市)上建立消防枢纽,为了尽量提高枢纽的利用率,要求其他所有城市到这条路径的距离的最大值最小。

你受命监管这个项目,你当然需要知道应该把枢纽建立在什么位置上。

输入输出格式

输入格式:

输入包含n行:

第1行,两个正整数n和s,中间用一个空格隔开。其中n为城市的个数,s为路径长度的上界。设结点编号以此为1,2,……,n。

从第2行到第n行,每行给出3个用空格隔开的正整数,依次表示每一条边的两个端点编号和长度。例如,“2 4 7”表示连接结点2与4的边的长度为7。

输出格式:

输出包含一个非负整数,即所有城市到选择的路径的最大值,当然这个最大值必须是所有方案中最小的。

输入输出样例

输入样例#1:

5 2

1 2 5

2 3 2

2 4 4

2 5 3

输出样例#1:

5

输入样例#2:

8 6

1 3 2

2 3 2

3 4 6

4 5 3

4 6 4

4 7 2

7 8 3

输出样例#2:

5

说明

【数据规模和约定】

对于20%的数据,n<=300。

对于50%的数据,n<=3000。

对于100%的数据,n<=300000,边长小等于1000。

貌似自己的思路和别人的不太一样啊???

本来只打算拿50%的数据的,结果A?!

这道题先求出树的直径,然后我们从底部开始往上枚举,很显然的一个贪心:固定了一个端点之后,另一端点越远越好。所以我们直接枚举端点,找到它的另一端。

这时候我通过LCA\(O(1)\)来计算距离,就可以把此情况的最大距离用\(O(n)\)处理得到。

加上前面的贪心思想,就愉快地AC了???

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
int read()
{
int x=0,w=1;char ch=getchar();
while(ch>'9'||ch<'0') {if(ch=='-')w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return x*w;
}
int n,s,x,y,z,root,t,l,r,cnt,ans=2000000000,sum;
int head[300010],dis[300010],f[300010][20],deep[300010],vis[300010];
struct node{
int to,next,v;
}edge[600010];
void add(int x,int y,int z)
{
cnt++;
edge[cnt].to=y;
edge[cnt].next=head[x];
edge[cnt].v=z;
head[x]=cnt;
}
int LCA(int x,int y)
{
if(deep[x]<deep[y]) swap(x,y);
for(int i=19;i>=0;i--)
{
if(deep[f[x][i]]>=deep[y]) x=f[x][i];
}
if(x==y) return x;
for(int i=19;i>=0;i--)
{
if(f[x][i]!=f[y][i])
x=f[x][i],y=f[y][i];
}
return f[x][0];
}
void init()
{
for(int i=1;i<=9;i++)
{
for(int j=1;j<=n;j++)
{
f[j][i]=f[f[j][i-1]][i-1];
}
}
}
void dfs1(int k,int fa)
{
for(int i=head[k];i;i=edge[i].next)
{
int v=edge[i].to;
if(v==fa) continue;
dis[v]=dis[k]+edge[i].v;
dfs1(v,k);
}
}
void dfs2(int k,int fa)
{
for(int i=head[k];i;i=edge[i].next)
{
int v=edge[i].to;
if(v==fa) continue;
dis[v]=dis[k]+edge[i].v;f[v][0]=k;deep[v]=deep[k]+1;
dfs2(v,k);
}
}
int main()
{
n=read();s=read();
for(int i=1;i<n;i++)
{
x=read();y=read();z=read();
add(x,y,z);add(y,x,z);
}
dfs1(1,0);
for(int i=1;i<=n;i++)
{
if(!root||dis[i]>dis[root]) root=i;
}
memset(dis,0,sizeof(dis));
deep[root]=1;dfs2(root,0);
for(int i=1;i<=n;i++)
{
if(!t||dis[i]>dis[t]) t=i;
}
init();
l=t;r=t;vis[t]=1;
while(l!=0)
{
sum=0;
if(dis[r]-dis[l]>s)
{
vis[r]=0;r=f[r][0];vis[r]=1;
}
else
{
while(dis[r]-dis[l]<=s&&l!=0) {l=f[l][0];vis[l]=1;}
int rlca;
for(int i=1;i<=n;i++)
{
if(vis[i]) continue;
int lca1=LCA(l,i),lca2=LCA(r,i);
if(deep[lca1]>deep[lca2]) rlca=lca1;
else rlca=lca2;
if(deep[rlca]<deep[l])
{
sum=max(sum,dis[l]+dis[i]-2*dis[rlca]);
}
else sum=max(sum,dis[i]-dis[rlca]);
}
ans=min(ans,sum);
l=f[l][0];vis[l]=1;
}
}
cout<<ans;
}

[SDOI2011]消防(贪心,图论,树的直径)的更多相关文章

  1. 图论--树的直径--DFS+树形DP模板

    #include <iostream> #include <cstring> using namespace std; //maxv:源点能到的最远点,maxdis:最远点对应 ...

  2. 【SDOI2011 第2轮 DAY1】消防 -[树的直径+树链剖分][解题报告]

    [SDOI2011 第2轮 DAY1]消防 题面: SDOI2011 第2轮 DAY1]消防 时间限制 : 20000 MS 空间限制 : 565536 KB 问题描述 时限\(2s\) 某个国家有\ ...

  3. bzoj 2282 [Sdoi2011]消防(树的直径,二分)

    Description 某个国家有n个城市,这n个城市中任意两个都连通且有唯一一条路径,每条连通两个城市的道路的长度为zi(zi<=1000). 这个国家的人对火焰有超越宇宙的热情,所以这个国家 ...

  4. [SDOI2011]消防(树的直径)

    [SDOI2011]消防 题目描述 某个国家有n个城市,这n个城市中任意两个都连通且有唯一一条路径,每条连通两个城市的道路的长度为zi(zi<=1000). 这个国家的人对火焰有超越宇宙的热情, ...

  5. 与图论的邂逅01:树的直径&基环树&单调队列

    树的直径 定义:树中最远的两个节点之间的距离被称为树的直径.  怎么求呢?有两种官方的算法(不要问官方指谁我也不晓得): 1.两次搜索.首先任选一个点,从它开始搜索,找到离它最远的节点x.然后从x开始 ...

  6. Sonya and Ice Cream CodeForces - 1004E 树的直径, 贪心

    题目链接 set维护最小值贪心, 刚开始用树的直径+单调队列没调出来... #include <iostream>#include <cstdio> #include < ...

  7. [Bzoj2282]消防(二分答案+树的直径)

    Description 某个国家有n个城市,这n个城市中任意两个都连通且有唯一一条路径,每条连通两个城市的道路的长度为zi(zi<=1000). 这个国家的人对火焰有超越宇宙的热情,所以这个国家 ...

  8. [NOI2003]逃学的小孩 (贪心+树的直径+暴力枚举)

    Input 第一行是两个整数N(3 <= N <= 200000)和M,分别表示居住点总数和街道总数.以下M行,每行给出一条街道的信息.第i+1行包含整数Ui.Vi.Ti(1<=Ui ...

  9. 牡丹江.2014B(图论,树的直径)

    B - Building Fire Stations Time Limit:5000MS     Memory Limit:131072KB     64bit IO Format:%lld & ...

随机推荐

  1. 使用vue技术应当使用的技术和兼容性选择

    假如你的前端框架使用了vue,那你可以大胆地使用以下技术,并忽略其他js和css的兼容性问题,因为 关于vue的兼容性 官方给出了规定 Vue 不支持 IE8 及以下版本,因为 Vue 使用了 IE8 ...

  2. CSS基础-background的那些属性

    background的那些属性 background:背景的意思常用的六个属性 1.background-color:背景颜色 2.background-image:背景图像 3.background ...

  3. onchange and oninput

    https://www.w3schools.com/jsref/event_oninput.asp Supported HTML tags: <input type="color&qu ...

  4. 通用 C# DLL 注入器injector(注入dll不限)

    为了方便那些不懂或者不想用C++的同志,我把C++的dll注入器源码转换成了C#的,这是一个很简单实用的注入器,用到了CreateRemoteThread,WriteProcessMemory ,Vi ...

  5. iptables List the rules in a chain or all chains

    [root@e ~]# iptables -hiptables v1.4.21 Usage: iptables -[ACD] chain rule-specification [options] ip ...

  6. 003-js-MD5

    源码 /* global define */ ;(function ($) { 'use strict' /* * Add integers, wrapping at 2^32. This uses ...

  7. 类Runtime

    Runtime类的概述和使用 Runtime类概述 每个Java应用程序都有一个Runtime类实例,使应用程序能够与其运行的环境相连接.可以通过getRuntime方法获取当前运行时. 应用程序不能 ...

  8. vue集成汉字转拼音或提取首字母

    需求:             有时我们为了节省用户的维护量,需要根据中文生成出相应的拼音和缩写 解决:            此方法是利用汉字和Unicode编码对应找到相应字母 一.编写汉字和编码 ...

  9. java锁的概念

    在学习或者使用Java的过程中进程会遇到各种各样的锁的概念:公平锁.非公平锁.自旋锁.可重入锁.偏向锁.轻量级锁.重量级锁.读写锁.互斥锁等待.这里整理了Java中的各种锁,若有不足之处希望大家在下方 ...

  10. 设置IIS的gzip

    如果服务器iis 中没有配置动态压缩的话,在性能中选项中配置. 设置成功之后: