题意

给出一个N个点M条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大
值,求从起点1到点N的最小代价。起点的代价是离开起点的边的边权,终点的代价是进入终
点的边的边权
N<=100000
M<=200000

题解一

  1. 无向图连边时要拆成两条边,这大家都知道
  2. 然后把边看成”点”,(优化:)因为不可能每个”点”之间都能连边,所以
  3. 对除了 1点和 n点之外的点连出去的边(真实边)按权值从小到大排个序,边看作”点”
  4. 然后 i “点”向 i + 1”点”连一条边值为(化点之前的两条边的权值差);i “点”向 i - 1”点”连一条权值为0LL的边;然后每个”点”和它反向边化成的”点”连一条边值为该边以前权值的边。
  5. 然后用堆优化的dij跑一遍最短路,求出dis[i]( dis[i] = 初始点 到 i “点”的最短距离)。
  6. 最短路初始过程:将原点1连出去的 边看成点 后,加入队列。
  7. 求值:枚举连向终点n的边,维护ans = minj{dis[i^1] + val[i]}// i 是边的编号

题解二

比较有技巧的建图

首先考虑暴力点的建图:

把每条无向边拆成两条有向边.把每条边看成一个点,对于两条边a->b,b->c

在这两条边之间连有向边,边权为这两条边的权值的较大值.

新建源点S,汇点T, S向所有从1连出去的边连边,所有指向n的边向T连边. 求S->T的最短路即可.

这样的复杂度会达到O(m2)O(m2)

考虑优化一下,有个类似网络流中补流思想的方法:

考虑利用差值来建边.

依然把每条边x-y拆成x->y,y->x.

枚举每个中转点x. 将x的出边按权值排序,x的每条入边向对应的出边连该边权值的边,x的每条出边向第一个比它大的出边连两边权差值的边,x的每条出边向第一个比它小的出边连权值为0的边. 新建源汇S,T S向每条1的出边连权值为该边边权的边.每条n的入边向T连该边权值的边.

跑S->T的最短路即可.

这样的复杂度是O(mlogm)O(mlogm)就可以AC

顺带提一句,用Dijkstra效率很快

C++代码

#include <bits/stdc++.h>
using namespace std; const int maxn = 1e5 + ; struct Edge{
int from,to;
int w,nxt;
}edge[maxn << ],e[maxn << ]; int n , m ;
int pre[maxn];
int fa[maxn],cost[maxn],dep[maxn];
int head[maxn],tot; void init(){
tot = ;
memset(head,-,sizeof head);
for(int i = ;i <= n ; i++){
pre[i] = i;
}
} bool cmp(Edge a,Edge b){
return a.w < b.w;
} void add_edge(int u ,int v,int w){
e[tot].from = u;
e[tot].to = v;
e[tot].w = w;
e[tot].nxt = head[u];
head[u] = tot ++;
} inline int find(int x){if(x == pre[x])return x;else return pre[x] = find(pre[x]);} void kruskal(){
sort(edge+,edge++m,cmp);
int fu,fv,u,v;
for(int i = ;i <= m; i++){
u = edge[i].from;
v = edge[i].to;
fu = find(u);
fv = find(v);
if(fu != fv){
pre[fu] = fv;
add_edge(u,v,edge[i].w);
add_edge(v,u,edge[i].w);
}
}
} void dfs(int u,int Fa,int step){
int v;
for(int i = head[u]; ~i ;i = e[i].nxt){
v = e[i].to;
if(v ==Fa) continue;
dep[v] = step;
fa[v] = u;
cost[v] = e[i].w;
dfs(v,u,step + );
}
} int lca(int u,int v){
int du = dep[u];
int dv = dep[v];
int res = ;
while(du > dv){
res = max(res,cost[u]);
u = fa[u];
du --;
}
while(dv > du){
res = max(res,cost[v]);
v = fa[v];
dv --;
}
while(u != v){
res = max(res,cost[u]);
res = max(res,cost[v]);
u = fa[u];
v = fa[v];
}
return res;
} int main(){
int cas = ;
while(cin >> n >> m){
if(cas) puts("");
else cas ++;
init();
for(int i = ;i <= m; i ++){
int u , v , w;
cin >> u >> v >> w;
edge[i].from = u;
edge[i].to = v;
edge[i].w = w;
}
//cout << 1 ;
kruskal();
fa[] = cost[] = dep[] = ;
dfs(,-,);
int q;
cin >> q;
while(q--){
int u , v ;
cin >> u >> v;
cout << lca(u,v) << endl;
}
}
return ;
}

【BZOJ-4289】Tax 最短路 + 技巧建图(化边为点)的更多相关文章

  1. 【BZOJ-4289】Tax 最短路 + 技巧建图

    4289: PA2012 Tax Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 168  Solved: 69[Submit][Status][Dis ...

  2. [Bzoj4289]PA2012 Tax(Dijkstra+技巧建图)

    Description 给出一个N个点M条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大值,求从起点1到点N的最小代价.起点的代价是离开起点的边的边权,终点的代价是进入终点的边的边 ...

  3. bzoj 4289 Tax - 最短路

    题目传送门 这是一条通往vjudge的神秘通道 这是一条通往bzoj的神秘通道 题目大意 如果一条路径走过的边依次为$e_{1}, e_{2}, \cdots , e_{k}$,那么它的长度为$e_{ ...

  4. [BZOJ4289] [PA2012] Tax 解题报告 (最短路+差分建图)

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=4289 4289: PA2012 Tax Time Limit: 10 Sec  Memo ...

  5. LOJ#6354. 「CodePlus 2018 4 月赛」最短路[最短路优化建图]

    题意 一个 \(n\) 个点的完全图,两点之间的边权为 \((i\ xor\ j)*C\) ,同时有 \(m\) 条额外单向路径,问从 \(S\) 到 \(T\) 的最短路. \(n\leq 10^5 ...

  6. bzoj 2259 [Oibh]新型计算机 ——最短路(建图)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2259 不是 n^2 条边!连那条边权为0的边之后,只要每个位置向它的前一个位置和后一个位置连 ...

  7. 牛客网NOIP赛前集训营-提高组(第八场)-B-推箱子[最短路优化建图]

    题意 有 \(n\) 个箱子,指定一个箱子开始向右推,如果碰到了别的箱子会令其移动,问 \(k\) 秒之后每个箱子所在的位置. \(n\leq 10^5\). 分析 转化成最短路模型,如果两个箱子 \ ...

  8. uva 1048 最短路的建图 (巧,精品)

    大白书 P341这题说的是给了NT种飞机票,给了价钱和整个途径,给了nI条要旅游的路线.使用飞机票都必须从头第一站开始坐,可以再这个路径上的任何一点下飞机一但下飞机了就不能再上飞机,只能重新买票,对于 ...

  9. bzoj 4289 TAX —— 点边转化

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4289 把边转化成点,同一个原有点相连的边中,边权小的向大的连差值的边,大的向小的连0的边: ...

随机推荐

  1. [LOJ6433][PKUSC2018]最大前缀和:状压DP

    分析 我们让每个数列在第一个取到最大前缀和的位置被统计到. 假设一个数列在\(pos\)处第一次取到最大前缀和,分析性质,有: 下标在\([1,pos]\)之间的数形成的数列的每个后缀和(不包括整个数 ...

  2. scala实战学习-尾递归函数

    求 $$ \Sigma\sideset{^b_a}f(x) $$ object sumfunc{ def sum(f: Int => Int)(a: Int)(b:Int): Int = { @ ...

  3. scala实战学习-快速排序

    def qSort(a:List[Int]):List[Int]={ if(a.length < 2) a else qSort(a.filter(a.head > _)) ++ a.fi ...

  4. sqlmap自动注入 --DETECTION

    --level /usr/shar/sqlmap/xml/payloads 多个脚本 sqlmap里面的payload都在这里面 --risk 1-4(默认 1/ 无害) Risk升高可造成数据被串改 ...

  5. 第六周学习总结&第四次实验报告

    第六周学习总结&第四次实验报告 学习总结 这周我们简单的学习了一点点关于接口的内容,接口是Java中最重要的概念之一,接口可以理解为一个特殊的类, 里面由全局常量和公共的抽象方法组成,接口摆脱 ...

  6. AJAX请求和普通HTTP请求区别

    两者本质区别: AJAX通xmlHttpRequest象请求服务器服务器接受请求返数据实现刷新交互 普通http请求通httpRequest象请求服务器接受请求返数据需要页面刷新 AJAX请求 普通请 ...

  7. Python学习笔记:字典型的数据结构

    根据书上的定义,字典是将数据与键相关联,这个键相当于是一组数据的一个名称,键必须是唯一的. python中提供了内置的映射类型--字典.映射其实就是一组key和value以及之间的映射函数,其特点是: ...

  8. DAY 3模拟赛

    DAY3 钟皓曦来了! T1 网址压缩 [问题描述] 你是能看到第一题的 friends 呢.           ——hja 众所周知,小葱同学擅长计算,尤其擅长计算组合数,但这个题和组合数没什么关 ...

  9. java远程调用中出现的问题(主要是在不同电脑之间出现的问题)

    1.在运行远程服务端之前,使用rmic命令操作impl 2.运行客户端出现time out,尝试ping服务器电脑不能成功.关闭服务器端防火墙,可ping成功. 3.显示连接失败,错误显示的ip不是自 ...

  10. WPF VLC客户端和SDK的简单应用

    VLC_SDK编程指南 VLC 是一款自由.开源的跨平台多媒体播放器及框架,可播放大多数多媒体文件,以及 DVD.音频 CD.VCD 及各类流媒体协议.它可以支持目前市面上大多数的视频解码,除了Rea ...