P1399 [NOI2013]快餐店
基环树的题当然先考虑树上怎么搞,直接求个直径就完事了
现在多了个环,先把非环上的直径(设为 $ans$)和环上节点 $x$ 到叶子的最大距离(设为 $dis[x]$)求出来
考虑到对于某种最优的方案,环上一定有某条边完全不用走
所以可以枚举断哪个边然后暴力,显然会 $T$ 飞
考虑能够快速求出某条边断开后经过环的最大直径
预处理 $A[i],B[i],C[i],D[i]$
$A[i]$ 表示从环上某个固定的起点出发到达 $i$ 之前(包括 $i$) 的最长路径长度(这里路径包括到达叶子节点的路径)
这个可以通过维护起点到当前距离再加上我们之前求出的 $dis$ 得到
$B[i]$ 表示从环上那个固定的起点出发到达 $i$ 之前(包括 $i$)的节点中某两个叶子节点之间的最长距离
这个即为 $sum[i]-sum[j]+dis[i]+dis[j]$,其中 $sum[i]$ 表示起点到 $i$ 的环上路程
移项 $sum[i]+dis[i]+dis[j]-sum[j]$ ,动态维护当前 $dis[j]-sum[j]$ 的最大值即可
$C[i]$ 表示从环上终点(其实就是那个固定的起点的另一边的第一个节点)出发......(剩下的和 $A[i]$表示的是一样的)
$D[i]$ 同 $B[i]$ ,只是起点变成了终点,反过来了
那么预处理之后,枚举断边 $i$ (注意边 $i$ 连接 $i$ 和 $i+1$)那么 $t=max(B[i],D[i+1],A[i]+C[i+1]+w)$
其中 $w$ 是连接起点和终点的边的长度,那么 $A[i]+C[i+1]+w$ 其实就是跨过起点终点的距离
最后 $ans=max(ans,min(t))$,注意 $t$ 取最小值,因为断边是在最优方案下,肯定要取最小
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<vector>
using namespace std;
typedef long long ll;
inline int read()
{
int x=,f=; char ch=getchar();
while(ch<''||ch>'') { if(ch=='-') f=-; ch=getchar(); }
while(ch>=''&&ch<='') { x=(x<<)+(x<<)+(ch^); ch=getchar(); }
return x*f;
}
const int N=2e5+;
const ll INF=1e18;
int n;
int fir[N],from[N<<],to[N<<],val[N<<],cntt;
inline void add(int a,int b,int c) { from[++cntt]=fir[a]; fir[a]=cntt; to[cntt]=b; val[cntt]=c; }
bool vis[N],ring[N],GG;
vector <int> st,wt;
vector <int> q,w;
void find(int x,int fa,int ww)
{
st.push_back(x); wt.push_back(ww); vis[x]=;
for(int i=fir[x];i;i=from[i])
{
int &v=to[i]; if(v==fa) continue;
if(vis[v])
{
while(st[st.size()-]!=v)
{
ring[st[st.size()-]]=;
q.push_back(st[st.size()-]);
w.push_back(wt[wt.size()-]);
st.pop_back(); wt.pop_back();
}
ring[v]=GG=; q.push_back(v);
w.push_back(val[i]); return;
}
find(v,x,val[i]); if(GG) return;
}
st.pop_back(); wt.pop_back();
}
ll dis[N],ans;
void dfs(int x,int fa)
{
for(int i=fir[x];i;i=from[i])
{
int &v=to[i]; if(ring[v]||v==fa) continue;
dfs(v,x); ans=max(ans,dis[x]+dis[v]+val[i]);
dis[x]=max(dis[x],dis[v]+val[i]);
}
}
ll A[N],B[N],C[N],D[N];
void solve()
{
find(,,); for(auto u: q) dfs(u,u);
ll sum=,mx=; int len=q.size();
A[]=B[]=dis[q[]];
for(int i=;i<len;i++)
{
mx=max(mx,dis[q[i-]]-sum); sum+=w[i-];
A[i]=max(A[i-],sum+dis[q[i]]);
B[i]=max(B[i-],mx+sum+dis[q[i]]);
}
sum=mx=; C[len-]=D[len-]=dis[q[len-]];
for(int i=len-;i>=;i--)
{
mx=max(mx,dis[q[i+]]-sum); sum+=w[i];
C[i]=max(C[i+],sum+dis[q[i]]);
D[i]=max(D[i+],mx+sum+dis[q[i]]);
}
ll res=B[len-];
for(int i=;i<len-;i++)
{
ll t=max(max(B[i],D[i+]), A[i]+C[i+]+w[len-] );
res=min(res,t);
}
ans=max(ans,res);
printf("%lld",ans>>);
ans& ? printf(".5\n") : printf(".0\n");
}
int main()
{
n=read(); int a,b,c;
for(int i=;i<=n;i++)
{
a=read(),b=read(),c=read();
add(a,b,c); add(b,a,c);
}
solve();
return ;
}
P1399 [NOI2013]快餐店的更多相关文章
- P1399 [NOI2013] 快餐店 方法记录
原题题面P1399 [NOI2013] 快餐店 题目描述 小 T 打算在城市 C 开设一家外送快餐店.送餐到某一个地点的时间与外卖店到该地点之间最短路径长度是成正比的,小 T 希望快餐店的地址选在离最 ...
- luogu P1399 [NOI2013]快餐店
传送门 注意到答案为这个基环树直径\(/2\) 因为是基环树,所以考虑把环拎出来.如果直径不过环上的边,那么可以在环上每个点下挂的子树内\(dfs\)求得.然后如果过环上的边,那么环上的部分也是一条链 ...
- bzoj 3242: [Noi2013]快餐店 章鱼图
3242: [Noi2013]快餐店 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 266 Solved: 140[Submit][Status] ...
- bzoj3242 [Noi2013]快餐店
Description 小T打算在城市C开设一家外送快餐店.送餐到某一个地点的时间与外卖店到该地点之间最短路径长度是成正比的,小T希望快餐店的地址选在离最远的顾客距离最近的地方. 快餐店的顾客分布在城 ...
- 3242: [Noi2013]快餐店 - BZOJ
Description 小T打算在城市C开设一家外送快餐店.送餐到某一个地点的时间与外卖店到该地点之间最短路径长度是成正比的,小T希望快餐店的地址选在离最远的顾客距离最近的地方. 快餐店的顾客分布在城 ...
- 动态规划:NOI2013 快餐店
Description 小 T打算在城市C开设一家外送快餐店.送餐到某一个地点的时间与外卖店到该地点之间最短路径长度是成正比的,小T希望快餐店的地址选在离最远的顾客距离最近 的地方. 快餐店的顾客分布 ...
- NOI2013 快餐店
http://uoj.ac/problem/126 总的来说,还是很容易想的,就是有点恶心. 首先,很明显只有一个环. 我们先找出这个环,给各棵树编号id[i],然后各棵树分别以环上的点为根,求出每个 ...
- bzoj 3242: [Noi2013]快餐店
Description 小T打算在城市C开设一家外送快餐店.送餐到某一个地点的时间与外卖店到该地点之间最短路径长度是成正比的,小T希望快餐店的地址选在离最远的顾客距离最近的地方. 快餐店的顾客分布在城 ...
- BZOJ3242/UOJ126 [Noi2013]快餐店
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...
随机推荐
- [笔记]MongoDB 二(Linux下MongoDB API C++编程)
一.连接类 DBClientConnection,派生自DBClientBase.DBClientBase类是实现query, update, insert, remove等功能. 构造函数:DBCl ...
- (LeetCode)1114. 按序打印
题目来源:https://leetcode-cn.com/problems/print-in-order/ 我们提供了一个类: public class Foo { public void one( ...
- Atcoder ARC101 E 树dp
https://arc101.contest.atcoder.jp/tasks/arc101_c 题解是也是dp,好像是容斥做的,但是看不懂,而且也好像没讲怎么变n^2,看了写大佬的代码,自己理解了一 ...
- [CSP-S模拟测试]:装饰(状压DP)
题目传送门(内部题114) 输入格式 第一行一个正整数$n$. 接下来一行$n-1$个正整数,第$i$个数为$f_{i+1}$. 接下来一行$n$个数,若第$i$个数为$0$则表示林先森希望$i$号点 ...
- microsoft office 2010 visio激活
office2010 tookit这款绿色的软件进行Visio2010激活 http://jingyan.baidu.com/article/4f34706ecae169e387b56dd1.html
- DS博客作业8——课程总结
1.当初你是如何做出选择计算机专业的决定的? 本来我在集美大学第一志愿专业是理学院的数据科学与大数据,奈何隔壁县城小伙伴比我高了2分,我就来到了网络,但经过我和她的交流,我意识到我们的课程差不多,同样 ...
- 清明 DAY 3
ans=1000*4 分别固定千位,百位,十位,个位为1,其余位置随便排 对于每一个质因数的n次方,共有n+1中选择方法,即这个质因数的0~n次方 故共有 4*3*5=60 种方法 (1)取两册 ...
- sql四种连接方式
1.内连接(inner join)只有两个表相匹配的行才能在结果集中显示出来2.左连接(left join)以左表为主,左表所有的数据都会在结果集中出现,右表根据左表对应的数据显示,与左表匹配的数 ...
- nodejs之流数据读取与写入
1.(fs.createReadStream)当文件比较大时,建议使用文件流读取,不会出现卡顿现象,demo如下. const fs = require('fs'); //流的方式读取文件 var r ...
- SQLServer 断开指定会话
方法1: SELECT * FROM [Master].[dbo].[SYSPROCESSES] WHERE [DBID] IN ( SELECT [DBID] FROM [Master].[dbo] ...