Description

You have a directed weighted graph with n vertexes and m edges. The value of a path is the sum of the weight of the edges you passed. Note that you can pass any edge any times and every time you pass it you will gain the weight.

Now there are q queries that you need to answer. Each of the queries is about the k-th minimum value of all the paths.

Input

The input consists of multiple test cases, starting with an integer t (1≤t≤100), denoting the number of the test cases.

The first line of each test case contains three positive integers n,m,q. (\(1≤n,m,q≤5∗10^4\))

Each of the next m lines contains three integers ui,vi,wi, indicating that the i−th edge is from ui to vi and weighted wi.(1≤ui,vi≤n,1≤wi≤109)

Each of the next q lines contains one integer k as mentioned above.(\(1≤k≤5∗10^4\))

It's guaranteed that \(Σn ,Σm, Σq,Σmax(k)≤2.5∗10^5\) and max(k) won't exceed the number of paths in the graph.

Output

For each query, print one integer indicates the answer in line.

Sample Input

1
2 2 2
1 2 1
2 1 2
3
4

Sample Output

3
3

题解

给定一张有向图,q次询问,每次询问第k小的路径长度。

离线,预处理出最大的k范围内的所有路径长度。先将所有边按边权排序,用一个set存储当前可以成为答案的边,且set的最大的大小为maxk,每次从set中取出w最小的边,看看能否更新set中的元素,不能更新则break(边权从小到大排序,小边权无法更新之后边权也无法更新),对set中的元素都做一次这样的处理后,我们就得到了[1,maxk]的答案,输出询问即可,复杂度\(O(k*log(m+k))\)

AC代码

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 5e4 + 50;
struct node {
int v; ll w;
node (int v = 0, int w = 0): v(v), w(w) {}
bool operator < (const node &b) const {
return w < b.w;
}
};
vector<node> G[N];
struct Edge {
int u, v; ll w;
int id;
Edge(int u = 0, int v = 0, ll w = 0, int id = 0): u(u), v(v), w(w), id(id) {}
bool operator < (const Edge &b) const {
if (w == b.w)
if (u == b.u)
if (v == b.v)
return id < b.id;
else return v < b.v;
else return u < b.u;
else return w < b.w;
}
bool operator == (const Edge &b) const {
return w == b.w && u == b.u && v == b.v && id == b.id;
}
};
int Q[N];
ll ans[N];
int main() {
int t; scanf("%d", &t);
while (t--) {
int n, m, q;
scanf("%d%d%d", &n, &m, &q);
for (int i = 1; i <= n; i++) G[i].clear();
set<Edge> st; st.clear();
int cnt = 0;
for (int i = 1; i <= m; i++) {
int u, v, w;
scanf("%d%d%d", &u, &v, &w);
G[u].push_back(node(v, w));
st.insert(Edge(u, v, w, ++cnt));
}
for (int i = 1; i <= n; i++) sort(G[i].begin(), G[i].end());
int maxk = 0;
for (int i = 1; i <= q; i++) {
scanf("%d", &Q[i]);
maxk = max(maxk, Q[i]);
}
while (st.size() > maxk) st.erase(st.end());
for (int i = 1; i <= maxk; i++) {
Edge now = *st.begin();
st.erase(st.begin());
ans[i] = now.w;
if (i == maxk) break;
int u = now.v;
for (int j = 0; j < G[u].size(); j++) {
int v = G[u][j].v;
ll w = G[u][j].w;
if (i + st.size() < maxk) st.insert(Edge(now.u, v, now.w + w, ++cnt));
else {
set<Edge>::iterator it = st.end(); it--;
Edge last = *it;
if (now.w + w < last.w) {
st.erase(it);
st.insert(Edge(u, v, now.w + w, ++cnt));
}
else break;
}
}
}
for (int i = 1; i <= q; i++) printf("%lld\n", ans[Q[i]]);
}
return 0;
}

HDU-6705 Path的更多相关文章

  1. HDU 6582 Path

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total Submissio ...

  2. HDU - 6582 Path (最短路+最小割)

    题意:给定一个n个点m条边的有向图,每条边有个长度,可以花费等同于其长度的代价将其破坏掉,求最小的花费使得从1到n的最短路变长. 解法:先用dijkstra求出以1为源点的最短路,并建立最短路图(只保 ...

  3. [BFS,A*,k短路径] 2019中国大学生程序设计竞赛(CCPC) - 网络选拔赛 path (Problem - 6705)

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=6705 path Time Limit: 2000/2000 MS (Java/Others)    Mem ...

  4. 2019CCPC网络赛

    ^&^ (HDU 6702) Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Other ...

  5. 2019CCPC网络预选赛 八道签到题题解

    目录 2019中国大学生程序设计竞赛(CCPC) - 网络选拔赛 6702 & 6703 array 6704 K-th occurrence 6705 path 6706 huntian o ...

  6. hdu 1973 Prime Path

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=1973 Prime Path Description The ministers of the cabi ...

  7. hdu 1839 Delay Constrained Maximum Capacity Path 二分/最短路

    Delay Constrained Maximum Capacity Path Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu. ...

  8. hdu 3631 Shortest Path(Floyd)

    题目链接:pid=3631" style="font-size:18px">http://acm.hdu.edu.cn/showproblem.php?pid=36 ...

  9. HDU 5492(DP) Find a path

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5492 题目大意是有一个矩阵,从左上角走到右下角,每次能向右或者向下,把经过的数字记下来,找出一条路径是 ...

  10. [HDU 1973]--Prime Path(BFS,素数表)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1973 Prime Path Time Limit: 5000/1000 MS (Java/Others ...

随机推荐

  1. 红帽学习笔记[RHCSA] 第九课[文件归档、硬盘、分区以及自动挂载、Swap、链接]

    文件归档 tar是什么 通过tar命令可以将大型文件汇集成一个文件(归档),注意没有压缩功能. 压缩方式 gzip 通过gzip过滤文档,使用最广泛 bzip2 通常比gzip压缩小,但是不如gzip ...

  2. Docker之单多/机容器管理

    Compose是用于定义和运行多容器Docker应用程序的工具.通过Compose,您可以使用YAML文件来配置应用程序的服务.然后,使用一个命令,就可以从配置中创建并启动所有服务. Docker-C ...

  3. IDEA 快捷键 (长期更新)

    自动清除无效 import 和 清除无效 import  ctrl+alt+o    

  4. poj-1236.network of schools(强连通分量 + 图的入度出度)

    Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 27121   Accepted: 10 ...

  5. Java内存结构详解

    Java内存结构详解 Java把内存分成:栈内存,堆内存,方法区,本地方法区和寄存器等. 下面分别介绍栈内存,堆内存,方法区各自一些特性: 1.栈内存 (1)一些基本类型的变量和对象的引用变量都是在函 ...

  6. php 操作Redis发送短信

    循环查询redis队列里面的数据 然后提交数据后将反馈信息再写入另一个 redis list里面 代码 <?php /** * System Name: sent message * User: ...

  7. Windows消息理解(系统消息队列,进程消息队列,非队列消息)

    // ====================Windows消息分类==========================在Windows中,消息分为以下三类:标准消息——除WM_COMMAND之外,所 ...

  8. LeetCode 235. 二叉搜索树的最近公共祖先

    235. 二叉搜索树的最近公共祖先 题目描述 给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先. 百度百科中最近公共祖先的定义为:"对于有根树 T 的两个结点 p.q,最近公共祖先 ...

  9. Windows系统如何安装Redis

    转自 http://blog.csdn.net/lamp_yang_3533/article/details/52024744 一.Redis的下载地址 Redis官方并没有提供Redis的windo ...

  10. seajs与requirejs

    1 seajs暴露的两个对象 二 define()定义 引用模块 三插件 css插件和requirejs插件 4 seajs使用和建议