• 一、ELK 介绍

  • 二、ELK的几种常见架构

>>ELK 介绍<<

ELK 构建在开源基础之上,让您能够安全可靠地获取任何来源、任何格式的数据,并且能够实时地对数据进行搜索、分析和可视化。

最近查看 ELK 官方网站,发现新一代的日志采集器 Filebeat,他是 Beats 家族其中的一员,性能超越 logstash,部署简单,占用资源少,可以很方便的和 logstash,ES 对接。

从官方网站可以看出新一代 ELK 架构如下:

1、Beats

Beats 平台集合了多种单一用途数据采集器。这些采集器安装后可用作轻量型代理,从成百上千或成千上万台机器向 Logstash 或 Elasticsearch 发送数据。

Beats 家族各采集器如下:

采集器 采集内容
Auditbeat 审计数据
Filebeat 日志文件
Heartbeat 可用性检测
Metricbeat 指标
Packetbeat 网络数据
Winlogbeat Windows 事件日志

Beats可以直接发送数据到ElasticSearch或通过logstash,在那里您可以进一步处理和增强数据,然后在Kibana可视化。

Filebeat

filebat是一个用于转发和集中日志数据的轻量级shipper。作为代理安装在服务器上,filebeat监视指定的日志文件或位置,收集日志事件,并将它们转发给ElasticSearchlogstash进行索引。
以下是filebeat的工作原理:当您启动filebeat时,它将启动一个或多个输入,这些输入位于您为日志数据指定的位置。对于文件记录所在的每一个日志,filebat启动一台harvester。每个harvester读取一个新内容的日志,并将新的日志数据发送到libbeatibbeat聚合事件并将聚合的数据发送到filebeat配置的输出。

2、Logstash

Logstash 是开源的服务器端数据处理管道,能够同时从多个来源采集数据,转换数据,然后将数据发送到您最喜欢的 “存储库” 中。(我们的存储库当然是 Elasticsearch。)

数据往往以各种各样的形式,或分散或集中地存在于很多系统中。 Logstash 支持各种输入选择 ,可以在同一时间从众多常用来源捕捉事件。能够以连续的流式传输方式,轻松地从您的日志、指标、Web 应用、数据存储以及各种 AWS 服务采集数据。

数据从源传输到存储库的过程中,Logstash 过滤器能够解析各个事件,识别已命名的字段以构建结构,并将它们转换成通用格式,以便更轻松、更快速地分析和实现商业价值。

借助 Pipeline 管理图形界面来管理 Logstash 的部署,您可以轻而易举地治理数据加工管道。此外,此项管理功能也与 Elastic Stack 内置的安全特性无缝集成,用以避免任何意外操作。

3、Elasticsearch

Elasticsearch 是基于 JSON 的分布式搜索和分析引擎,专为实现水平扩展、高可靠性和管理便捷性而设计。

Elasticsearch 是一个分布式的 RESTful 风格的搜索和数据分析引擎,能够解决不断涌现出的各种用例。作为 Elastic Stack 的核心,它集中存储您的数据,帮助您发现意料之中以及意料之外的情况。

Elasticsearch 允许执行和合并多种类型的搜索 ( 结构化、非结构化、地理位置、度量指标 )搜索方式随心而变。先从一个简单的问题出发,试试看能够从中发现些什么。

4、Kibana

Kibana 能够以图表的形式呈现数据,并且具有可扩展的用户界面,供您全方位配置和管理 Elastic Stack。

Kibana 核心搭载了一批经典功能:柱状图、线状图、饼图、旭日图,等等。它们充分利用了 Elasticsearch 的聚合功能。

>>ELK的几种常见架构<<

1、All-In-One

在这种架构中,只有一个 Logstash、Elasticsearch 和 Kibana 实例,集中部署于一台服务器。Logstash 通过输入插件从多种数据源(比如日志文件、标准输入 Stdin 等)获取数据,再经过滤插件加工数据,然后经 Elasticsearch 输出插件输出到 Elasticsearch,通过 Kibana 展示。

这种架构非常简单,使用场景也有限。初学者可以搭建这个架构,了解 ELK 如何工作。

2、Logstash 分布式采集

这种架构是对上面架构的扩展,把一个 Logstash 数据搜集节点扩展到多个,分布于多台机器,将解析好的数据发送到 Elasticsearch server 进行存储,最后在 Kibana 查询、生成日志报表等。

这种结构因为需要在各个服务器上部署 Logstash,而它比较消耗 CPU 和内存资源,所以比较适合计算资源丰富的服务器,否则容易造成服务器性能下降,甚至可能导致无法正常工作。

3、Beats 分布式采集

这种架构引入 Beats 作为日志搜集器。目前 Beats 包括四种:

  • Packetbeat(搜集网络流量数据);
  • Topbeat(搜集系统、进程和文件系统级别的 CPU 和内存使用情况等数据);
  • Filebeat(搜集文件数据);
  • Winlogbeat(搜集 Windows 事件日志数据)

Beats 将搜集到的数据发送到 Logstash,经 Logstash 解析、过滤后,将其发送到 Elasticsearch 存储,并由 Kibana 呈现给用户。

这种架构解决了 Logstash 在各服务器节点上占用系统资源高的问题。相比 Logstash,Beats 所占系统的 CPU 和内存几乎可以忽略不计。另外,Beats 和 Logstash 之间支持 SSL/TLS 加密传输,客户端和服务器双向认证,保证了通信安全。

4、引入消息队列机制的 Logstash 分布式架构

这种架构使用 Logstash 从各个数据源搜集数据,然后经消息队列输出插件输出到消息队列中。目前 Logstash 支持 Kafka、Redis、RabbitMQ 等常见消息队列。然后 Logstash 通过消息队列输入插件从队列中获取数据,分析过滤后经输出插件发送到 Elasticsearch,最后通过 Kibana 展示。

这种架构适合于日志规模比较庞大的情况。但由于 Logstash 日志解析节点和 Elasticsearch 的负荷比较重,可将他们配置为集群模式,以分担负荷。引入消息队列,均衡了网络传输,从而降低了网络闭塞,尤其是丢失数据的可能性,但依然存在 Logstash 占用系统资源过多的问题。

5、引入消息队列机制的 Filebeat + Logstash 分布式架构

Filebeat 已经支持 kafka 作为 ouput,5.2.1 版本的 Logstash 已经支持 Kafka 作为 Input,和上面的架构不同的地方仅在于,把 Logstash 日志搜集发送替换为了 Filebeat。这种架构是当前最为完美的,有极低的客户端采集开销,引入消息队列,均衡了网络传输,从而降低了网络闭塞,尤其是丢失数据的可能性。

接下来我们进行初步的探视,利用测试环境体验下ELK Stack + Filebeat,测试环境我们就不进行 Kafka 的配置了,因为他的存在意义在于提高可靠性。

集中式日志分析平台 Elastic Stack(介绍)的更多相关文章

  1. ES 集中式日志分析平台 Elastic Stack(介绍)

    一.ELK 介绍 ELK 构建在开源基础之上,让您能够安全可靠地获取任何来源.任何格式的数据,并且能够实时地对数据进行搜索.分析和可视化. 最近查看 ELK 官方网站,发现新一代的日志采集器 File ...

  2. 集中式日志分析平台 - ELK Stack - 安全解决方案 X-Pack

    大数据之心 关注  0.6 2017.02.22 15:36* 字数 2158 阅读 16457评论 7喜欢 9 简介 X-Pack 已经作为 Elastic 公司单独的产品线,前身是 Shield, ...

  3. 安装logstash+kibana+elasticsearch+redis搭建集中式日志分析平台

    安装logstash+kibana+elasticsearch+redis搭建集中式日志分析平台 2014-01-16 19:40:57|  分类: logstash |  标签:logstash   ...

  4. centos7搭建ELK Cluster集群日志分析平台(四):Fliebeat-简单测试

    续之前安装好的ELK集群 各主机:es-1 ~ es-3 :192.168.1.21/22/23 logstash: 192.168.1.24 kibana: 192.168.1.25 测试机:cli ...

  5. centos7搭建ELK Cluster集群日志分析平台(三):Kibana

    续  centos7搭建ELK Cluster集群日志分析平台(一) 续  centos7搭建ELK Cluster集群日志分析平台(二) 已经安装好elasticsearch 5.4集群和logst ...

  6. centos7搭建ELK Cluster集群日志分析平台(一):Elasticsearch

    应用场景: ELK实际上是三个工具的集合,ElasticSearch + Logstash + Kibana,这三个工具组合形成了一套实用.易用的监控架构, 很多公司利用它来搭建可视化的海量日志分析平 ...

  7. centos7搭建ELK Cluster集群日志分析平台

    应用场景:ELK实际上是三个工具的集合,ElasticSearch + Logstash + Kibana,这三个工具组合形成了一套实用.易用的监控架构, 很多公司利用它来搭建可视化的海量日志分析平台 ...

  8. centos7搭建ELK Cluster集群日志分析平台(二):Logstash

    续  centos7搭建ELK Cluster集群日志分析平台(一) 已经安装完Elasticsearch 5.4 集群. 安装Logstash步骤 . 安装Java 8 官方说明:需要安装Java ...

  9. 中小型研发团队架构实践七:集中式日志ELK

    一.集中式日志 日志可分为系统日志.应用日志以及业务日志,系统日志给运维人员使用,应用日志给研发人员使用,业务日志给业务操作人员使用.我们这里主要讲解应用日志,通过应用日志来了解应用的信息和状态,以及 ...

随机推荐

  1. Zookeeper集群快速搭建

    Zookeeper集群快速搭建 1.cd /usr/local/zookeeper/conf(如在192.168.212.101服务器) mv zoo_sample.cfg zoo.cfg 修改con ...

  2. 深浅拷贝(copy)

    目录 copy 模块 1.拷贝(赋值) 1). x为不可变数据类型 2). x为可变数据类型 3). 可变数据类型(比如列表)内,既有不可变元素,又有容器类型可变元素(比如列表) 2.浅拷贝 3.深拷 ...

  3. 一次linux站点安装经验

    之前了解了一点,刚过完年回来,顺便研究了一下小程序. http://s.w7.cc/index.php?c=wiki&do=view&id=1&list=84 先申请了一个li ...

  4. [Linux系统] (7)Keepalived高可用

    一.解决LVS server单点故障 如果集群中只有一台LVS server提供数据包分发服务,如果宕机,则会导致所有的业务重点,因为所有的请求都无法到达后面的Real server. 此时我们可以采 ...

  5. AngularJS基础语法

    1.ng-app 决定了angularjs的作用域范围,你可以如下使用: <html ng-app> … </html> 来让angularjs渲染整个页面,也可以使用 < ...

  6. 5.JavaBean

    JavaBean JSP开发初期HTML,css,java代码混杂在一起,给程序的调试和维护带来很大困难.将与HTML分离并将对象和逻辑java代码封装成类就是一个JavaBean组件. 1.Java ...

  7. C++11 中的强类型枚举

    // C++11之前的enum类型是继承C的,不温不火: // C++11对enum动刀了,加强了类型检查,推出强类型enum类型,眼前一亮 // 使用过QT 的都知道,早就应该这么做了,用的很爽!! ...

  8. python27 错误汇总

    一.TypeError: object of type 'NoneType' has no len() 解决的方法: 源代码:resp_data = None  (None是一个空的对象) 修改后代码 ...

  9. BZOJ 4386 Luogu P3597 [POI2015]Wycieczki (矩阵乘法)

    题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=4386 (luogu) https://www.luogu.org/pro ...

  10. 如何在matalb图像上添加公式符号

    方法: legend({'$\sigma(t)$'},'interpreter','latex') 效果如下: