深度优先搜索(DFS)

【算法入门】

1.前言
深度优先搜索(缩写DFS)有点类似广度优先搜索,也是对一个连通图进行遍历的算法。它的思想是从一个顶点V0开始,沿着一条路一直走到底,如果发现不能到达目标解,那就返回到上一个节点,然后从另一条路开始走到底,这种尽量往深处走的概念即是深度优先的概念。

你可以跳过第二节先看第三节,:)

2.深度优先搜索VS广度优先搜索

2.1演示深度优先搜索的过程
还是引用上篇文章的样例图,起点仍然是V0,我们修改一下题目意思,只需要让你找出一条V0到V6的道路,而无需最短路。

图2-1 寻找V0到V6的一条路(无需最短路径)

假设按照以下的顺序来搜索:

1.V0->V1->V4,此时到底尽头,仍然到不了V6,于是原路返回到V1去搜索其他路径;

2.返回到V1后既搜索V2,于是搜索路径是V0->V1->V2->V6,,找到目标节点,返回有解。

这样搜索只是2步就到达了,但是如果用BFS的话就需要多几步。

2.2深度与广度的比较
(你可以跳过这一节先看第三节,重点在第三节)

从上一篇《【算法入门】广度/宽度优先搜索(BFS) 》中知道,我们搜索一个图是按照树的层次来搜索的。

我们假设一个节点衍生出来的相邻节点平均的个数是N个,那么当起点开始搜索的时候,队列有一个节点,当起点拿出来后,把它相邻的节点放进去,那么队列就有N个节点,当下一层的搜索中再加入元素到队列的时候,节点数达到了N2,你可以想想,一旦N是一个比较大的数的时候,这个树的层次又比较深,那这个队列就得需要很大的内存空间了。

于是广度优先搜索的缺点出来了:在树的层次较深&子节点数较多的情况下,消耗内存十分严重。广度优先搜索适用于节点的子节点数量不多,并且树的层次不会太深的情况。

那么深度优先就可以克服这个缺点,因为每次搜的过程,每一层只需维护一个节点。但回过头想想,广度优先能够找到最短路径,那深度优先能否找到呢?深度优先的方法是一条路走到黑,那显然无法知道这条路是不是最短的,所以你还得继续走别的路去判断是否是最短路?

于是深度优先搜索的缺点也出来了:难以寻找最优解,仅仅只能寻找有解。其优点就是内存消耗小,克服了刚刚说的广度优先搜索的缺点。

3.深度优先搜索

3.1.举例

给出如图3-1所示的图,求图中的V0出发,是否存在一条路径长度为4的搜索路径。

图3-1

显然,我们知道是有这样一个解的:V0->V3->V5->V6。

3.2.处理过程

3.3.对应例子的伪代码

这里先给出上边处理过程的对应伪代码。

/**
* DFS核心伪代码
* 前置条件是visit数组全部设置成false
* @param n 当前开始搜索的节点
* @param d 当前到达的深度,也即是路径长度
* @return 是否有解
*/
bool DFS(Node n, int d){
if (d == ){//路径长度为返回true,表示此次搜索有解
return true;
} for (Node nextNode in n){//遍历跟节点n相邻的节点nextNode,
if (!visit[nextNode]){//未访问过的节点才能继续搜索 //例如搜索到V1了,那么V1要设置成已访问
visit[nextNode] = true; //接下来要从V1开始继续访问了,路径长度当然要加 if (DFS(nextNode, d+)){//如果搜索出有解
//例如到了V6,找到解了,你必须一层一层递归的告诉上层已经找到解
return true;
} //重新设置成未访问,因为它有可能出现在下一次搜索的别的路径中
visit[nextNode] = false; }
//到这里,发现本次搜索还没找到解,那就要从当前节点的下一个节点开始搜索。
}
return false;//本次搜索无解
}

3.4.DFS函数的调用堆栈

此后堆栈调用返回到V0那一层,因为V1那一层也找不到跟V1的相邻未访问节点

此后堆栈调用返回到V3那一层

此后堆栈调用返回到主函数调用DFS(V0,0)的地方,因为已经找到解,无需再从别的节点去搜别的路径了。

4.核心代码

这里先给出DFS的核心代码。

/**
* DFS核心伪代码
* 前置条件是visit数组全部设置成false
* @param n 当前开始搜索的节点
* @param d 当前到达的深度
* @return 是否有解
*/
bool DFS(Node n, int d){
if (isEnd(n, d)){//一旦搜索深度到达一个结束状态,就返回true
return true;
} for (Node nextNode in n){//遍历n相邻的节点nextNode
if (!visit[nextNode]){//
visit[nextNode] = true;//在下一步搜索中,nextNode不能再次出现
if (DFS(nextNode, d+)){//如果搜索出有解
//做些其他事情,例如记录结果深度等
return true;
} //重新设置成false,因为它有可能出现在下一次搜索的别的路径中
visit[nextNode] = false;
}
}
return false;//本次搜索无解
}

当然了,这里的visit数组不一定是必须的,在一会我给出的24点例子中,我们可以看到这点,这里visit的存在只是为了保证记录节点不被重新访问,也可以有其他方式来表达的,这里只给出核心思想。

深度优先搜索的算法需要你对递归有一定的认识,重要的思想就是:抽象!

可以从DFS函数里边看到,DFS里边永远只处理当前状态节点n,而不去关注它的下一个状态。

它通过把DFS方法抽象,整个逻辑就变得十分的清晰,这就是递归之美。

5.另一个例子:24点

5.1.题目描述
想必大家都玩过一个游戏,叫做“24点”:给出4个整数,要求用加减乘除4个运算使其运算结果变成24,4个数字要不重复的用到计算中。

例如给出4个数:1、2、3、4。我可以用以下运算得到结果24:

1*2*3*4 = 24;2*3*4/1 = 24;(1+2+3)*4=24;……

如上,是有很多种组合方式使得他们变成24的,当然也有无法得到结果的4个数,例如:1、1、1、1。

现在我给你这样4个数,你能告诉我它们能够通过一定的运算组合之后变成24吗?这里我给出约束:数字之间的除法中不得出现小数,例如原本我们可以1/4=0.25,但是这里的约束指定了这样操作是不合法的。

5.2.解法:搜索树
这里为了方便叙述,我假设现在只有3个数,只允许加法减法运算。我绘制了如图5-1的搜索树。

图5-1

此处只有3个数并且只有加减法,所以第二层的节点最多就6个,如果是给你4个数并且有加减乘除,那么第二层的节点就会比较多了,当延伸到第三层的时候节点数就比较多了,使用BFS的缺点就暴露了,需要很大的空间去维护那个队列。而你看这个搜索树,其实第一层是3个数,到了第二层就变成2个数了,也就是递归深度其实不会超过3层,所以采用DFS来做会更合理,平均效率要比BFS快(我没写代码验证过,读者自行验证)。

6.OJ题目
题目分类来自网络:

sicily:1019 1024 1034 1050 1052 1153 1171 1187

pku:1088 1176 1321 1416 1564 1753 2492 3083 3411

7.总结

DFS适合此类题目:给定初始状态跟目标状态,要求判断从初始状态到目标状态是否有解。

8.扩展
不知道你注意到没,在深度/广度搜索的过程中,其实相邻节点的加入如果是有一定策略的话,对算法的效率是有很大影响的,你可以做一下简单马周游跟马周游这两个题,你就有所体会,你会发现你在搜索的过程中,用一定策略去访问相邻节点会提升很大的效率。

这些运用到的贪心的思想,你可以再看看启发式搜索的算法,例如A*算法等。

=========================================================

出处:raphealguo@CSDN

【算法入门】深度优先搜索(DFS)的更多相关文章

  1. [算法入门]——深度优先搜索(DFS)

    深度优先搜索(DFS) 深度优先搜索叫DFS(Depth First Search).OK,那么什么是深度优先搜索呢?_? 样例: 举个例子,你在一个方格网络中,可以简单理解为我们的地图,要从A点到B ...

  2. 算法总结—深度优先搜索DFS

    深度优先搜索(DFS) 往往利用递归函数实现(隐式地使用栈). 深度优先从最开始的状态出发,遍历所有可以到达的状态.由此可以对所有的状态进行操作,或列举出所有的状态. 1.poj2386 Lake C ...

  3. [算法&数据结构]深度优先搜索(Depth First Search)

    深度优先 搜索(DFS, Depth First Search) 从一个顶点v出发,首先将v标记为已遍历的顶点,然后选择一个邻接于v的尚未遍历的顶点u,如果u不存在,本次搜素终止.如果u存在,那么从u ...

  4. 深度优先搜索 DFS 学习笔记

    深度优先搜索 学习笔记 引入 深度优先搜索 DFS 是图论中最基础,最重要的算法之一.DFS 是一种盲目搜寻法,也就是在每个点 \(u\) 上,任选一条边 DFS,直到回溯到 \(u\) 时才选择别的 ...

  5. 深度优先搜索DFS和广度优先搜索BFS简单解析(新手向)

    深度优先搜索DFS和广度优先搜索BFS简单解析 与树的遍历类似,图的遍历要求从某一点出发,每个点仅被访问一次,这个过程就是图的遍历.图的遍历常用的有深度优先搜索和广度优先搜索,这两者对于有向图和无向图 ...

  6. 利用广度优先搜索(BFS)与深度优先搜索(DFS)实现岛屿个数的问题(java)

    需要说明一点,要成功运行本贴代码,需要重新复制我第一篇随笔<简单的循环队列>代码(版本有更新). 进入今天的主题. 今天这篇文章主要探讨广度优先搜索(BFS)结合队列和深度优先搜索(DFS ...

  7. 深度优先搜索DFS和广度优先搜索BFS简单解析

    转自:https://www.cnblogs.com/FZfangzheng/p/8529132.html 深度优先搜索DFS和广度优先搜索BFS简单解析 与树的遍历类似,图的遍历要求从某一点出发,每 ...

  8. 算法与数据结构基础 - 深度优先搜索(DFS)

    DFS基础 深度优先搜索(Depth First Search)是一种搜索思路,相比广度优先搜索(BFS),DFS对每一个分枝路径深入到不能再深入为止,其应用于树/图的遍历.嵌套关系处理.回溯等,可以 ...

  9. 图的深度优先搜索(DFS)和广度优先搜索(BFS)算法

    深度优先(DFS) 深度优先遍历,从初始访问结点出发,我们知道初始访问结点可能有多个邻接结点,深度优先遍历的策略就是首先访问第一个邻接结点,然后再以这个被访问的邻接结点作为初始结点,访问它的第一个邻接 ...

随机推荐

  1. #333 Div2 Problem B Approximating a Constant Range (尺取 && RMQ || 尺取 && multiset)

    题目链接:http://codeforces.com/contest/602/problem/B 题意 :给出一个含有 n 个数的区间,要求找出一个最大的连续子区间使得这个子区间的最大值和最小值的差值 ...

  2. pyCharm报错"your evaluation license has expired, pycharm will now exit"解决方法(实测)

    一.修改C:\Windows\System32\drivers\etc 目录下的hosts文件 1.打开hosts文件,路径是 c:\windows\system32\drivers\etc\host ...

  3. Bootstrap Table 的X-editable插件怎么用

    在准备使用X-editable来做Bootstrap Table 的行内编辑的时候,根据http://www.cnblogs.com/landea... 的文章,我不能将全部效果重复实现,网上也搜索了 ...

  4. 京东面试题:Java中 ++i 的操作是线程安全的么?为什么?如何使其线程安全呢?

    你真的了解volatile关键字吗?http://blog.csdn.net/FansUnion/article/details/79495080 面试题:为什么最后两行没有运行?http://blo ...

  5. 关于R语言中set.seed()

    在r中取sample时候,经常会有set.seed(某数),经常看见取值很大,其实这里无论括号里取值是多少,想要上下两次取值一样,都需要在每次取值前输入同样的set.seed(某数),才能保证两次取值 ...

  6. db2表结构导出导入,数据库备份

    1.新增用户组.用户和查看所有用户: 新增系统用户组: #groupadd jldb //增加用户组jldb 需使用root权限 useradd jldb -g jldb //将新增用户赋值到jldb ...

  7. SpringMvc中@ModelAttribute的运用

    /** * 1. 有 @ModelAttribute 标记的方法, 会在每个目标方法执行之前被 SpringMVC 调用! * 2. @ModelAttribute 注解也可以来修饰目标方法 POJO ...

  8. Fresnel integral菲涅尔积分的一丢丢探讨

    起因源于导师的关于回旋曲线的一点问题 其中最后得到的曲率公式中的c,s’和s定义不明确 于是开始从头从(2.1)式中的积分入手探究 维基百科中Fresnel integral的S(x)与C(x)的定义 ...

  9. linux常用终端指令+如何用vim写一个c程序并运行

    在装好ubuntu之后今天学习了一些linux的一些基础知识: windows里面打开命令窗口是win+r,在linux系统里面,ctrl+alt+t打开终端,今天的一些指令都是围绕终端来说的 首先s ...

  10. session 、cookie、token的区别(转)

    session  session的中文翻译是“会话”,当用户打开某个web应用时,便与web服务器产生一次session.服务器使用session把用户的信息临时保存在了服务器上,用户离开网站后ses ...