E. Connected Component on a Chessboard

time limit per test2 seconds

memory limit per test256 megabytes

inputstandard input

outputstandard output

You are given two integers b and w. You have a chessboard of size 109×109 with the top left cell at (1;1), the cell (1;1) is painted white.

Your task is to find a connected component on this chessboard that contains exactly b black cells and exactly w white cells. Two cells are called connected if they share a side (i.e. for the cell (x,y) there are at most four connected cells: (x−1,y),(x+1,y),(x,y−1),(x,y+1)). A set of cells is called a connected component if for every pair of cells C1 and C2 from this set, there exists a sequence of cells c1, c2, ..., ck such that c1=C1, ck=C2, all ci from 1 to k are belong to this set of cells and for every i∈[1,k−1], cells ci and ci+1 are connected.

Obviously, it can be impossible to find such component. In this case print "NO". Otherwise, print "YES" and any suitable connected component.

You have to answer q independent queries.

Input

The first line of the input contains one integer q (1≤q≤105) — the number of queries. Then q queries follow.

The only line of the query contains two integers b and w (1≤b,w≤105) — the number of black cells required and the number of white cells required.

It is guaranteed that the sum of numbers of cells does not exceed 2⋅105 (∑w+∑b≤2⋅105).

Output

For each query, print the answer to it.

If it is impossible to find the required component, print "NO" on the first line.

Otherwise, print "YES" on the first line. In the next b+w lines print coordinates of cells of your component in any order. There should be exactly b black cells and w white cells in your answer. The printed component should be connected.

If there are several answers, you can print any. All coordinates in the answer should be in the range [1;109].

Example

inputCopy

3

1 1

1 4

2 5

outputCopy

YES

2 2

1 2

YES

2 3

1 3

3 3

2 2

2 4

YES

2 3

2 4

2 5

1 3

1 5

3 3

3 5

题意:

给你一个1e9*1e9的黑白棋盘,让你构造一个联通块,联通块中黑色个数为b,白色为w

思路:

直接构造一个横着的联通块,显然满足数据范围。

对黑色个数多还是白色个数多分开讨论,

细节见代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define rt return
#define dll(x) scanf("%I64d",&x)
#define xll(x) printf("%I64d\n",x)
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {ll ans = 1; while (b) {if (b % 2)ans = ans * a % MOD; a = a * a % MOD; b /= 2;} return ans;}
inline void getInt(int* p);
const int maxn = 1000010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/ int main()
{
//freopen("D:\\common_text\\code_stream\\in.txt","r",stdin);
// freopen("D:\\common_text\\code_stream\\out.txt","w",stdout); int q;
gg(q);
while (q--)
{
int b, w;
gg(b); gg(w);
if (b < w)
{
int m = b * 3 + 1;
if (w <= m)
{
printf("YES\n");
cout<<2<<" "<<2<<endl;
w--;
int x=3;
int y=2;
while(1)
{
cout<<y<<" "<<x<<endl;
if(w>b)
{
cout<<y-1<<" "<<x<<endl;
w--;
}
if(w>b)
{
cout<<y+1<<" "<<x<<endl;
w--;
}
if(w)
{
cout<<y<<" "<<x+1<<endl;
w--;
}
b--;
if(!b&&!w)
{
break;
}
x+=2;
}
} else
{
printf("NO\n");
}
} else
{
int m = w * 3 + 1;
if (b <= m)
{
printf("YES\n");
cout<<2<<" "<<3<<endl;
b--;
int x=4;
int y=2;
while(1)
{
cout<<y<<" "<<x<<endl;
if(b>w)
{
cout<<y-1<<" "<<x<<endl;
b--;
}
if(b>w)
{
cout<<y+1<<" "<<x<<endl;
b--;
}
if(b)
{
cout<<y<<" "<<x+1<<endl;
b--;
}
w--;
if(!b&&!w)
{
break;
}
x+=2;
}
} else
{
printf("NO\n");
}
}
cout<<endl;
} return 0;
} inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
}
else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}

Codeforces Round #575 (Div. 3) E. Connected Component on a Chessboard(思维,构造)的更多相关文章

  1. Codeforces Round #575 (Div. 3) E. Connected Component on a Chessboard

    传送门 题意: 给你一个黑白相间的1e9*1e9的棋盘,你需要从里面找出来由b个黑色的格子和w个白色的格子组成的连通器(就是你找出来的b+w个格子要连接在一起,不需要成环).问你可不可以找出来,如果可 ...

  2. Codeforces Round #553 (Div. 2)B. Dima and a Bad XOR 思维构造+异或警告

    题意: 给出一个矩阵n(<=500)*m(<=500)每一行任选一个数 异或在一起 求一个 异或在一起不为0 的每行的取值列号 思路: 异或的性质  交换律 x1^x2^x3==x3^x2 ...

  3. Codeforces Round #575 (Div. 3) 昨天的div3 补题

    Codeforces Round #575 (Div. 3) 这个div3打的太差了,心态都崩了. B. Odd Sum Segments B 题我就想了很久,这个题目我是找的奇数的个数,因为奇数想分 ...

  4. Codeforces Round #575 (Div. 3) 题解

    比赛链接:https://codeforc.es/contest/1196 A. Three Piles of Candies 题意:两个人分三堆糖果,两个人先各拿一堆,然后剩下一堆随意分配,使两个人 ...

  5. Codeforces Round #529 (Div. 3) E. Almost Regular Bracket Sequence (思维)

    Codeforces Round #529 (Div. 3) 题目传送门 题意: 给你由左右括号组成的字符串,问你有多少处括号翻转过来是合法的序列 思路: 这么考虑: 如果是左括号 1)整个序列左括号 ...

  6. Codeforces Round #575 (Div. 3)

    本蒟蒻已经掉到灰名了(菜到落泪),希望这次打完能重回绿名吧...... 这次赛中A了三题 下面是本蒟蒻的题解 A.Three Piles of Candies 这题没啥好说的,相加除2就完事了 #in ...

  7. Codeforces Round #575 (Div. 3) D2. RGB Substring (hard version) 水题

    D2. RGB Substring (hard version) inputstandard input outputstandard output The only difference betwe ...

  8. Codeforces Round #575 (Div. 3) D1+D2. RGB Substring (easy version) D2. RGB Substring (hard version) (思维,枚举,前缀和)

    D1. RGB Substring (easy version) time limit per test2 seconds memory limit per test256 megabytes inp ...

  9. Codeforces Round #575 (Div. 3) C. Robot Breakout (模拟,实现)

    C. Robot Breakout time limit per test3 seconds memory limit per test256 megabytes inputstandard inpu ...

随机推荐

  1. P5436 【XR-2】缘分

    P5436 [XR-2]缘分 题解 很显然给出一个n,要想使缘分最大,一定要选 n 和 n-1 对吧 但是这里有一个特盘,当 n=1 时,缘分应该为1 而不是0 代码 #include<bits ...

  2. 线性回归和正则化(Regularization)

    python风控建模实战lendingClub(博主录制,包含大量回归建模脚本和和正则化解释,2K超清分辨率) https://study.163.com/course/courseMain.htm? ...

  3. fstab中使用设备的uuid

    设备定位的方法有: 设备名称, 如:/dev/sda1, 随着linux内核加载模块顺序在每次启动的时候可能会不同, 在插拔U盘/移动硬盘的时候, 设备分配到的名称可能不同,这样fs映射就会失败 因此 ...

  4. matlab7与win7不兼容

    移动鼠标到其打开图标,右键打开属性,选择兼容性,勾选"以兼容模式运行程序",选择Windows Vista

  5. EasyPHP(php集成环境)下载 v5.4.6官方安装版

    EasyPHP版本:12.1(32位) PHP版本:5.4.6 MYSQL版本:5.5.27 APACHE版本:2.4.2 下载地址请点击

  6. 阶段3 2.Spring_08.面向切面编程 AOP_8 spring中的环绕通知

    环绕通知.method属性需要新加一个方法 在logger内中新加aroundPringLog方法 异常代码先注释掉 对比现在的环绕通知和之前写代理类做的环绕通知.右侧的方法内有明确的业务层方法(切入 ...

  7. centos 7 ip a 或ifconfig 报command not found

    CentOS 7 下 ifconfig command not found 或 ip command not found 解决办法 首先查看:/sbin/ifconfig   /sbin/ip 是否存 ...

  8. GET 和 POST 区别?网上多数答案都是错的!

    最近在看<HTTP权威指南>这本书,对HTTP协议有了更深一层的了解. 在我们面试过程中关于HTTP协议有两个经典的面试题: 1. 谈谈HTTP中GET与POST的区别. 2. 在浏览器中 ...

  9. 【LeetCode】123、买卖股票的最佳时机 III

    Best Time to Buy and Sell Stock III 题目等级:Hard 题目描述: Say you have an array for which the ith element ...

  10. Python示例-Json Parse

    import sys import json def main(): # json dump dump_data = {"api.version": sys.api_version ...