传送门

解题思路

  这道题就是求带标号的无向连通图个数,首先考虑\(O(n^2)\)的做法,设\(f_i\)表示有\(i\)个节点的无向连通图个数,那么考虑容斥,先把所有的无向图求出,即为\(2^{C(n,2)}\),再减去不联通的情况,而计算不联通情况时可以枚举\(1\)号点这个联通块的大小,就有方程
  \[f_i=2^{C_i^2}-\sum\limits_{j=1}^{i-1}C_{i-1}^{j-1}2^{C^2_{i-j}}f_j\]
  发现这样的时间复杂度为\(O(n^2)\)的,无法通过本题。考虑优化,我们设法把左右两边的\(f\)合并,可以给式子同时除一个\((i-1)!\),可得
\[\frac{f_i}{(i-1)!}=\frac{2^{C_i^2}}{(i-1)!}-\sum\limits_{j=1}^{i-1}\frac{2^{C^2_{i-j}}f_j}{(j-1)!(i-j)!}\]
  发现右边假设\(j\)枚举到\(i\)正好是左边,那么就移项。
\[\sum\limits_{j=1}^i\frac{C^{2}_{i-j}f_j}{(j-1)!(i-j)!}=\frac{2^{C_i^2}}{(i-1)!}\]
  右边是卷积的形式
\[\sum\limits_{j=1}^i\frac{f_j}{(j-1)!}*\frac{2^{C^2_{i-j}}}{(i-j)!}=\frac{2^{C^2_i}}{(i-1)!}\]
  设\(A=\sum\limits_{i=1}^n\dfrac{f_i}{(i-1)!}x^i\),\(B=\sum\limits_{i=0}^{n-1}\dfrac{2^{C_i^2}}{i!}x^i\),\(C=\sum\limits_{i=1}^n\dfrac{2^{C_i^2}}{(i-1)!}x^i\),则
\[A*B=C\]
\[A=C*B^{-1}\]
  多项式求逆即可,时间复杂度\(O(nlogn)\)

BZOJ 3456: 城市规划(dp+多项式求逆)的更多相关文章

  1. BZOJ 3456: 城市规划 与 多项式求逆算法介绍(多项式求逆, dp)

    题面 求有 \(n\) 个点的无向有标号连通图个数 . \((1 \le n \le 1.3 * 10^5)\) 题解 首先考虑 dp ... 直接算可行的方案数 , 容易算重复 . 我们用总方案数减 ...

  2. BZOJ 3456 城市规划 ( NTT + 多项式求逆 )

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=3456 题意: 求出\(n\)个点的简单(无重边无自环)无向连通图的个数.(\(n< ...

  3. 【BZOJ】3456: 城市规划 动态规划+多项式求逆

    [题意]求n个点的带标号无向连通图个数 mod 1004535809.n<=130000. [算法]动态规划+多项式求逆 [题解]设$g_n$表示n个点的无向图个数,那么显然 $$g_n=2^{ ...

  4. 【bzoj3456】城市规划 dp+多项式求逆

    Description 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了. 刚才说过, 阿狸的国家有n个城市, 现在国家需要在某些城市对之间建立一些贸易路线, 使得整个国家的任意两个城市都直接或 ...

  5. 【bzoj3456】城市规划(多项式求逆+dp)

    Description 求\(~n~\)个点组成的有标号无向连通图的个数.\(~1 \leq n \leq 13 \times 10 ^ 4~\). Solution 这道题的弱化版是poj1737, ...

  6. 【BZOJ】3456: 城市规划(多项式求ln)

    题解 在我写过分治NTT,多项式求逆之后 我又一次写了多项式求ln 我们定义一个数列的指数型生成函数为 \(\sum_{i = 0}^{n} \frac{A_{i}}{i!} x^{i}\) 然后这个 ...

  7. CF848E Days of Floral Colours——DP+多项式求逆/分治NTT

    官方题解:http://codeforces.com/blog/entry/54233 就是由简入繁 1.序列处理,只考虑一个半圆 2.环形处理(其实这个就是多了旋转同构) 然后基于分割线邻居的跨越与 ...

  8. 洛谷P4841 城市规划(生成函数 多项式求逆)

    题意 链接 Sol Orz yyb 一开始想的是直接设\(f_i\)表示\(i\)个点的无向联通图个数,枚举最后一个联通块转移,发现有一种情况转移不到... 正解是先设\(g(n)\)表示\(n\)个 ...

  9. BZOJ3456 城市规划 【多项式求逆】

    题目链接 BZOJ3456 题解 之前我们用分治\(ntt\)在\(O(nlog^2n)\)的复杂度下做了这题,今天我们使用多项式求逆 设\(f_n\)表示\(n\)个点带标号无向连通图数 设\(g_ ...

随机推荐

  1. jenkins持续集成、插件以及凭据

    Jenkins介绍 Jenkins是一个开源软件项目,是基于Java开发的一种持续集成工具,用于监控持续重复的工作,旨在提供一个开放易用的软件平台,使软件的持续集成变成可能. Jenkins功能包括: ...

  2. Unity3D架构之PureMVC

    之前了解过UI实现框架大多是用MVC架构的,才听说有这么一个基于MVC的跨平台开源框架叫PureMVC,前几天用到了做了一下,写一写分析总结官网位置:http://puremvc.org/ PureM ...

  3. 【Unity 系统知识】 各种路径

    一.Assets下的Resources(Unity系统文件夹) :路径 Application.dataPath/Resources 可以使用Resources.Load("文件名字,注:不 ...

  4. Linux安装redis服务器和部署

    Linux安装redis和部署 第一步:下载安装包 wget http://download.redis.io/releases/redis-5.0.5.tar.gz 访问https://redis. ...

  5. mysql练习题目试水50题,附建库sql代码

    如果你没试过水的话,那一题一题地每一题都敲一遍吧.不管它们对你看来有多么简单.  建库代码 部分题目答案在末尾,可用ctrl f  搜索题号. 作业练习——学生-选课 表结构 学生表: Student ...

  6. Windows下anaconda安装opencv

    win+R打开cmd界面,输入conda create -n opencv python=3.6,创建名为opencv的虚拟空间,然后一路y,直到安装完成. activate opencv 然后输入  ...

  7. 攻防世界--no-strings-attached

    测试文件:https://adworld.xctf.org.cn/media/task/attachments/5d4117b968684b9483d0d4464e0a6fea 这道题要使用到gdb文 ...

  8. django报错

    报错: SyntaxError Generator expression must be parenthesized 问题原因: 由于django 1.11版本和python3.7版本不兼容, 2.0 ...

  9. Codeforces Round #420 (Div. 2) - A

    题目链接:http://codeforces.com/contest/821/problem/A 题意:给定一个n*n的矩阵. 问你这个矩阵是否满足矩阵里的元素除了1以外,其他元素都可以在该元素的行和 ...

  10. CS184.1X 计算机图形学导论 HomeWork1

    最容易填写的函数就是left.输入为旋转的角度,当前的eye与up这两个三维向量 void Transform::left(float degrees, vec3& eye, vec3& ...