传送



我们要在dfs的板子里记录哪些量呢?当前填的所有数的和sum?当前填的数构成的数值all?

sum可以留下,数值就扔掉叭。数值最大是1e18,要是留下,在g数组里有一维的大小是1e18。也许可以通过特殊方式使chen_zhe把空间上限放到你能存下。手动滑稽

那么为了我们的空间够用,怎么办呢?

上面不记录数值是因为它太大了,那我们能不能让它取模?

当然可以了,不过是对什么取模呢?1e9+7?显然不行,因为l,r<=1e18,产生重复的太多了

大质数?万一你填出来的数是取模数-1那也凉凉。

我们再考虑一下怎么判断sum能整除填出来的数。sum%mo==all%mo?理论上可行,but我们不能确定模数,所以待定

那如果我们枚举填出来的数字之和mo,使其成为模数,则只需判断sum是否等于mo即可。

然后代码就有了

#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<queue>
#include<cstring>
using namespace std;
typedef unsigned long long ull;
typedef long long ll;
const int inf=214748364;
const ll mod=1000000007;
inline ll read()
{
char ch=getchar();
ll x=0;bool f=0;
while(ch<'0'||ch>'9')
{
if(ch=='-')f=1;
ch=getchar();
}
while(ch>='0'&&ch<='9')
{
x=(x<<1)+(x<<3)+(ch^48);
ch=getchar();
}
return f?-x:x;
}
ll l,r;
ll g[20][172][172],li[20];
int t,mo;
void make(ll k)
{
t=0;
while(k)
{
li[++t]=k%10;
k/=10;
}
}
ll dfs(int now,int sum,int all,int mo,bool lim)
{
if(!now) return (!all)&&(sum==mo);
if(!lim&&g[now][sum][all]!=-1) return g[now][sum][all];
int up=lim?li[now]:9;
ll rtn=0;
for(int i=0;i<=up;i++)
{
rtn+=dfs(now-1,sum+i,(all*10+i)%mo,mo,lim&&(i==up));
}
if(!lim) g[now][sum][all]=rtn;
return rtn;
}
int main()
{
ll ans=0;
l=read();
r=read();
make(r);
for( mo=1;mo<=9*t;mo++)
memset(g,-1,sizeof(g)),ans+=dfs(t,0,0,mo,1);
make(l-1);
ll qwq=0;
for( mo=1;mo<=9*t;mo++)
{
memset(g,-1,sizeof(g));
qwq+=dfs(t,0,0,mo,1); }
ans-=qwq;
printf("%lld",ans);
}

洛谷P4127同类分布的更多相关文章

  1. bzoj1799(洛谷4127)同类分布(月之谜)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1799 https://www.luogu.org/problemnew/show/P4127 ...

  2. 洛谷 P4127 [AHOI2009]同类分布 解题报告

    P4127 [AHOI2009]同类分布 题目描述 给出两个数\(a,b\),求出\([a,b]\)中各位数字之和能整除原数的数的个数. 说明 对于所有的数据,\(1 ≤ a ≤ b ≤ 10^{18 ...

  3. 洛谷 P4127 [AHOI2009]同类分布

    题意简述 求l~r之间各位数字之和能整除原数的数的个数. 题解思路 数位DP 代码 #include <cstdio> #include <cstring> typedef l ...

  4. 洛谷P4127

    Description 给出两个数 \(a\),\(b\) ,求出 \([a,b]\) 中各位数字之和能整除原数的数的个数 Solution 设 \(f[i][j][k][q]\) 表示 枚举到第 i ...

  5. P4127 [AHOI2009]同类分布

    P4127 [AHOI2009]同类分布 题解 好的,敲上数位DP  DFS板子 记录一下填的各位数字之和 sum ,然后记录一下原数 yuan 最后判断一下  yuan%sum==0 不就好啦??? ...

  6. 【BZOJ1799】[AHOI2009]同类分布(动态规划)

    [BZOJ1799][AHOI2009]同类分布(动态规划) 题面 BZOJ 洛谷 题解 很容易想到数位\(dp\),然而数字和整除原数似乎不好记录.没关系,直接枚举数字和就好了,这样子就可以把整除原 ...

  7. 洛谷P2024 食物链

    挺神奇 题目描述 动物王国中有三类动物 A,B,C,这三类动物的食物链构成了有趣的环形.A 吃 B,B 吃 C,C 吃 A. 现有 N 个动物,以 1 - N 编号.每个动物都是 A,B,C 中的一种 ...

  8. 洛谷OJ P1196 银河英雄传说(带权并查集)

    题目描述 公元五八○一年,地球居民迁移至金牛座α第二行星,在那里发表银河联邦 创立宣言,同年改元为宇宙历元年,并开始向银河系深处拓展. 宇宙历七九九年,银河系的两大军事集团在巴米利恩星域爆发战争.泰山 ...

  9. [洛谷P1196][NOI2002]银河英雄传说 - 带偏移量的并查集(1)

    Description 公元五八〇一年,地球居民迁至金牛座α第二行星,在那里发表银河联邦创立宣言,同年改元为宇宙历元年,并开始向银河系深处拓展. 宇宙历七九九年,银河系的两大军事集团在巴米利恩星域爆发 ...

随机推荐

  1. Labview 错误1400-打包库封装类时将对类重命名导致

    现象 今天遇到了一个神奇的BUG,主程序调用了一个包含类的打包库,打包库中将字符串还原为类句柄时报错. 调用程序结构如下:. 主程序中将类句柄转化为XML字符串程序如下: 打包库内将字符串还原为句柄程 ...

  2. 正斜杠"/"与反斜杠"\"

    刚开始做前端,发现前端路径都用正斜杠"/"与Windows下路径定义完全不同 查了一下资料总结如下: Windows 用反斜杠(“\”)的历史来自 DOS,而 DOS 的另一个传统 ...

  3. 洛谷P1484 种树&洛谷P3620 [APIO/CTSC 2007]数据备份 题解(堆+贪心)

    洛谷P1484 种树&洛谷P3620 [APIO/CTSC 2007]数据备份 题解(堆+贪心) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/132 ...

  4. java中访问修饰符public,private,protected,friendly的作用域

    在修饰的元素上没有写任何的访问修饰符,则表示friendly. 作用域 当前类 同一包中 子孙类 其他包中 public √ √ √ √ protected √ √ √ × private √ x x ...

  5. 线性渐变css

    从上到下的线性渐变: #grad { background: -webkit-linear-gradient(red, blue); /* Safari 5.1 - 6.0 */ background ...

  6. 利用WebSocket和EventSource实现服务端推送

    可能有很多的同学有用 setInterval 控制 ajax 不断向服务端请求最新数据的经历(轮询)看下面的代码: setInterval(function() { $.get('/get/data- ...

  7. jquery.lazyload (JS懒加载框架使用详解)

    /** 本地加载方式加载JS*/        NSString *path = [[NSBundle mainBundle] pathForResource:@"jquery.js&quo ...

  8. ELK报错及解决方案

    ELK报错及解决方案 1.jdk版本问题 报错如下: future versions of Elasticsearch will require Java 11; your Java version ...

  9. Spring基础17——使用注解来配置Bean

    1.组件扫描 组件扫描(component scanning):Spring能够从classpath下自动扫描,侦测和实例化具有特定的注解的组件. 特定组件包括: —@Component:基本注解,标 ...

  10. Ubuntu 16.04安装N卡驱动、cuda、cudnn和tensorflow GPU版

    安装驱动 最开始在英伟达官网下载了官方驱动,安装之后无法登录系统,在登录界面反复循环,用cuda里的驱动也出现了同样的问题.最后解决办法是把驱动卸载之后,通过命令行在线安装驱动. 卸载驱动: sudo ...