题意简述

给定一个正\(n\)边形及其三角剖分,每条边的长度为\(1\),给你\(q\)组询问,每次询问给定两个点\(x_i\)至\(y_i\)的最短距离。

做法

显然正多边形的三角剖分是一个平面图,每一条剖分的边可以将正多边形分成有一条重边的两个独立的新多边形,显然这一个过程是可以用分治来实现的。

我们对于分治过程中的多边形进行重新编号,找到两端点数最平均的边割去,对于点集\(V\),边集\(E\)和询问集\(Q\)分别开三个vector传入函数中。

如果点集的大小等于了\(3\),我们就可以对单个三角形进行直接计算,否则对于集合进行左右的分治,贡献大小使用两次bfs计算,时间复杂度\(O(n \log{n})\)。

代码实现

#include<bits/stdc++.h>
using namespace std;
#define re register int
#define in inline
#define ll long long
#define ak *
#define db double
in char getch()
{
static char buf[1<<12],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<12,stdin),p1==p2)?EOF:*p1++;
}
char qwq;
#define gc() getch()
in int read()
{
re cz=0,ioi=1;qwq=gc();
while(qwq<'0'||qwq>'9') ioi=qwq=='-'?~ioi+1:1,qwq=gc();
while(qwq>='0'&&qwq<='9') cz=(cz<<3)+(cz<<1)+(qwq^48),qwq=gc();
return cz ak ioi;
}
#define vec vector
#define pb push_back
const int N=6e4+5;
int n,m,h[N],cnt,dx[N],dy[N],ans[N<<1],siz[N],le[N],ri[N],vis[N];
struct did{int next,to;}e[N<<2];
struct edge{int u,v;};
struct que{int a,b,id;};
vec<edge>ed;
vec<que>qr;
vec<int>ve;
in void Add(re x,re y) {e[++cnt]=(did){h[x],y},h[x]=cnt;}
in void add(re x,re y) {Add(x,y);Add(y,x);}
queue<int>q;
in void bfs(re s,re *dis)
{
dis[s]=0;q.push(s);
while(!q.empty())
{
re u=q.front();q.pop();
for(re i=h[u],v;v=e[i].to,i;i=e[i].next)
if(dis[v]>=1e9&&vis[v]) dis[v]=dis[u]+1,q.push(v);
}
}
void divide(vec<int>v,vec<edge>ed,vec<que>qr)
{
if(!qr.size()) return;
if(v.size()==3)
{
for(re i=0;i<qr.size();i++)
ans[qr[i].id]=((qr[i].a==qr[i].b)^1);
return;
}
vec<int>v1,v2;v1.clear(),v2.clear();
vec<edge>e1,e2;e1.clear(),e2.clear();
vec<que>q1,q2;q1.clear(),q2.clear();
re n=v.size(),m=ed.size();
for(re i=0;i<n;i++) siz[v[i]]=0;siz[v[0]]=1;
for(re i=1;i<n;i++) siz[v[i]]=siz[v[i-1]]+1;
re x=0,y=0,minn=1e9;
for(re i=0;i<m;i++)
{
re u=ed[i].u,v=ed[i].v,len=siz[v]-siz[u]-1;
if(max(len,n-2-len)<minn)
minn=max(len,n-2-len),x=u,y=v;
}
for(re i=0;i<n;i++)
{
if(v[i]>=x&&v[i]<=y) le[v[i]]=1,v1.pb(v[i]);
if(v[i]<=x||v[i]>=y) ri[v[i]]=1,v2.pb(v[i]);
}
for(re i=0;i<m;i++)
{
re u=ed[i].u,v=ed[i].v;
if(le[u]&&le[v]) e1.pb(ed[i]);
if(ri[u]&&ri[v]) e2.pb(ed[i]);
}
for(re i=0;i<qr.size();i++)
{
re a=qr[i].a,b=qr[i].b;
if(le[a]&&le[b]) q1.pb(qr[i]);
if(ri[a]&&ri[b]) q2.pb(qr[i]);
}
for(re i=0;i<n;i++) vis[v[i]]=1,dx[v[i]]=dy[v[i]]=1e9;
bfs(x,dx);bfs(y,dy);
for(re i=0;i<qr.size();i++)
{
re a=qr[i].a,b=qr[i].b,id=qr[i].id;
re lenx=dx[a]+dx[b],leny=dy[a]+dy[b];
ans[id]=min(min(ans[id],min(lenx,leny)),min(dx[a]+dy[b],dx[b]+dy[a])+1);
}
for(re i=0;i<n;i++) vis[v[i]]=le[v[i]]=ri[v[i]]=0;
divide(v1,e1,q1);divide(v2,e2,q2);
}
int main()
{
freopen("bsh.in","r",stdin);
freopen("bsh.out","w",stdout);
n=read();
for(re i=1;i<=n;i++) add(i,i+1-n*(i==n));
for(re i=1;i<=n-3;i++)
{
re x=read(),y=read();
add(x,y);if(x>y) swap(x,y);
ed.pb((edge){x,y});
}
for(re i=1;i<=n;i++) ve.pb(i);
m=read();
for(re i=1;i<=m;i++)
{
re x=read(),y=read();
if(x>y) swap(x,y);
qr.pb((que){x,y,i});
}
memset(ans,127,sizeof(ans));
divide(ve,ed,qr);
for(re i=1;i<=m;i++) printf("%d\n",ans[i]);
}

BSOJ5458 [NOI2018模拟5]三角剖分Bsh 分治最短路的更多相关文章

  1. 【NOI2018模拟5】三角剖分Bsh

    [NOI2018模拟5]三角剖分Bsh Description 给定一个正 n 边形及其三角剖分,共 2n - 3 条边 (n条多边形的边和n-3 条对角线),每条边的长度为 1. 共 q 次询问,每 ...

  2. JZOJ 5602.【NOI2018模拟3.26】Cti

    JZOJ 5602.[NOI2018模拟3.26]Cti Description 有一个 \(n×m\) 的地图,地图上的每一个位置可以是空地,炮塔或是敌人.你需要操纵炮塔消灭敌人. 对于每个炮塔都有 ...

  3. 【NOI2018模拟】Yja

    [NOI2018模拟]Yja Description 在平面上找\(n\)个点,要求这 \(n\)个点离原点的距离分别为 \(r1,r2,...,rn\) .最大化这\(n\) 个点构成的凸包面积,凸 ...

  4. JZOJ 3470. 【NOIP2013模拟联考8】最短路(path)

    470. [NOIP2013模拟联考8]最短路(path) (Standard IO) Time Limits: 1000 ms  Memory Limits: 262144 KB  Detailed ...

  5. 【JZOJ5605】【NOI2018模拟3.26】Arg

    题目描述 给出一个长度为 m 的序列 A, 请你求出有多少种 1...n 的排列, 满足 A 是它的一个 LIS. 解题思路 如何求出一个序列的LIS? 对于二分的方法,每次插入一个数,将它放到第一个 ...

  6. 7.6 NOI模拟赛 灯 根号分治

    比较容易想的题目~ 容易发现 点亮一种颜色的贡献=新增灯的数量-已经存在的边的条数. 用线段树维护并不容易.暴力的话复杂度是\(Q\cdot n\)的. 考虑根号分治 只单纯考虑度数<B的点的话 ...

  7. 5.15 省选模拟赛 T1 点分治 FFT

    LINK:5.15 T1 对于60分的暴力 都很水 就不一一赘述了. 由于是询问所有点的这种信息 确实不太会. 想了一下 如果只是询问子树内的话 dsu on tree还是可以做的. 可以自己思考一下 ...

  8. 【JZOJ5603】【NOI2018模拟3.27】Xjz

    题目描述 给定字符串 S 和 T. 串A和串B匹配的定义改为:存在一个字符的映射,使得A应用这个映射之后等于B,且这个映射必须为一个排列. A=121, B=313,当映射为{1->3, 2-& ...

  9. 【BZOJ-4456】旅行者 分治 + 最短路

    4456: [Zjoi2016]旅行者 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 254  Solved: 162[Submit][Status] ...

随机推荐

  1. ubuntu的无线网无法连上

    自己的笔记本可以连上wireless,但是实验室的台式机无法连上. 有无线显示,就是无法连上. 后来把连在机箱上的网线拔了以后可以连无线了.如果有网线连接,系统优先会选择有线的上网.

  2. JDK1.7安装配置环境变量+图文说明Jmeter安装

    Jmeter通常用于并发测试,本文介绍Jmeter工具的安装步骤. 工具/原料   WIN7 Jmeter安装包 JDK 一.安装JDK   1 [步骤一]安装jdk 1.下载jdk,到官网下载jdk ...

  3. hibernate 1 连接数据库、操作表

    ormapping(对象关系映射):数据库操作框架 缺点: 1.因为hql语句是hibernate内部自动生成,程序员干预不了,不可把控 2.功能比较复杂时不建议使用 优点: 1.比较简单. 2.有数 ...

  4. idea中配置tomcat详细

    1:首先要添加一个tomcat流程 2:配置tomcat: 3:配置tomcat中的deployment(就是配置你需要部署的工程) 4:配置tomcat中需要输出的日志logs 5:启动 tomca ...

  5. PHP_OS的常见值

    PHP_OS是PHP中的一个预定义常量,表示当前操作系统.那么PHP_OS有哪些值可用呢??PHP_OS的值一般可以为:CYGWIN_NT-5.1,Darwin,FreeBSD,HP-UX,IRIX6 ...

  6. P1049装箱问题

    这是一道DP(背包)水题. 题目问剩余空间最小,那么意思为装得最多.拿到题后便习惯了用贪心去思考,发现局部并不是全局最优,所以考虑dp.但是发现01背包的价值呢?(这个错误的想法就显示了我对dp理解得 ...

  7. 小白学Python——用 百度翻译API 实现 翻译功能

    本人英语不好,很多词组不认识,只能借助工具:百度翻译和谷歌翻译都不错,近期自学Python,就想能否自己设计一个百度翻译软件呢? 百度翻译开放平台: http://api.fanyi.baidu.co ...

  8. T-聊天止于呵呵

    (现代版)俗话说:流言止于智者,聊天止于呵呵.输入一段聊天记录,你的任务是数一数有 多少段对话“止于呵呵”,即对话的最后一句话包含单词 hehe 或者它的变形. 具体来说,我们首先提取出对话的最后一句 ...

  9. Android remote gdb

    On Android phone adb push ~/utils/android-ndk-r12b/prebuilt/android-arm64/gdbserver/gdbserver /data/ ...

  10. tcp和udp详解??

    TCP:面向连接的可靠传输 tcp规定了:传输服务必须建立连接      传输结束必须断开连接      传输数据必须保证可靠 数据的可靠性:无重复.无丢失.无失序.无差错. 建立连接(三次握手): ...