本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,博客地址为http://www.cnblogs.com/jasonnode/ 。

网站上有对应每一小节的在线练习大家可以去试试

一、搬砖 vs. 分布式计算

一个人搬砖很累,几个人一起搬就会轻松很多,也会快很多:

分布并行计算和几个人一起搬砖的意思是一致的,一个资源密集型的任务(搬砖或计算),需要 一组资源(小伙伴或计算节点),并行地完成:

  • 计算任务 => 搬砖
  • 计算节点 => 小伙伴

当计算任务过重时,我们就把计算任务拆分,然后放到多个计算节点上同时执行,这就是分布并行计算。

二、求文件中包含"包租婆"的行数

从一个总计100行的文件中找出所有包含“包租婆”的行数,我们不用太动脑筋就有一个算法:

  1. 读一行,判断这一行有“包租婆”吗?如果有,全局变量count加1。
  2. 文件到末尾了吗?如果没有,跳转到第1步继续执行。
  3. 打印count。

这几步程序,我打赌在你的计算机上可以一眨眼的功夫就执行完。但是如果这个文件有100万行呢? 如果还用刚才不动脑筋的笨算法,可能就不好交差了......

并行分布计算采用了一个大智若愚的办法,通过将笨算法丢给一群机器同时去算,实现规定时间内规定 任务的完成。你要知道,如今流行的Map/Reduce就是这么干的,这听起来不够高端,也确实引起了一些数据库专 家(聪明人)的非议。不过,不管黑猫白猫,能抓住老鼠的都是好猫。

三、Spark简化了分布式计算的开发

如果要把刚才的任务进行分布计算(假设有10台机器可以用),需要对原始的笨算法做一些调整:

  1. 把100万条数据分成10份,每份10万条。
  2. 在10台机器上分别执行笨办法计算包含“包租婆”的行数。
  3. 汇总合并10台机器的计算结果,即count,打印出来。

Oh...NO.....太...累...了...

好在有Spark的存在!我们只要把数据和计算程序交给Spark,它会机智地进行数据切分、算法复制、分布执行、结果合并。

四、Spark的计算范式:数据集上的计算

Spark用起来的确简单,但有一点特别要注意,你得按照Spark的范式写算法。

Spark是在数据集的层次上进行分布并行计算,是的,它只认成堆的数据:

我们提交给Spark的计算任务,必须满足两个条件:

  1. 数据是可以分块的,每块构成一个集合。
  2. 算法只能在集合级别执行操作。

比如,对于文本文件,在Spark中,一行就是一条记录,若干条记录组成一个集合。我们 原来的算法直接在每一行上进行计算,就不行了。需要先构建数据集,然后通过数据集的操作, 实现我们的目的。

五、SQL中的数据集

如果你熟悉SQL,可以用SQL的思维考虑下什么是集合操作:

  1. UPDATE USER SET GENDER='FEMALE'

上面的SQL语句就是一个集合操作,对一个数据集合,执行一条UPDATE操作,整个数据集都被修改了。

UPDATE语句有两个特点,这也是集合操作的要素:

1.对集合的每个记录执行相同的操作

UPDATE更新了集合中的所有记录,这些记录的 GENDER 字段值都被更新为 FEMALE 。

2.这个操作的具体行为是用户指定的

UPDATE通过SET子句,指定更新那些字段,怎么更新。

六、JavaScript中的数据集

JavaScript中数组对象的map方法也是一种集合操作。map方法将一个数组的每一个成员变换为新的成员, 并返回变换后新的集合。

  1. var a=[,,,];
    a.map(function(d){return d*;});
    console.log(a);

上面的JavaScript代码对一个数组执行map方法,将每一个成员进行倍乘。结果是获得一个新的 数组,比如在这里,将得到[2,4,6,8]。

这个例子也说明了集合操作的两个要素:

1.对集合的每个记录执行相同的操作

在map方法执行中,每个数组成员都被转换为原始值的2倍。

2.这个操作的具体行为是用户指定的

map方法使用一个匿名函数,指定如何对每一个原始数据进行变换。

七、将算法移植到Spark上

现在我们修改原始的笨算法,使之适用于Spark:

  1. 将数据载入并构造数据集
    在Spark中,这个数据集被称为`RDD` :弹性分布数据集。
  2. 对数据集进行map操作
    指定行为:如果一行原始记录包含“包租婆”,该行记录映射为新值1,否则映射为新值0 。
  3. 对map后的数据集进行collect操作,获得合并的结果。

上面的map操作,和前面JavaScript数组的map方法类似,将原始记录映射为新的记录,并返回一个新的RDD。 collect操作提取RDD中的全部数据到本地。

魔术发生在RDD上。Spark的RDD自动进行数据的切分和结果的整合。我们假装不知道就好了, 就像这一切只发生在本地的一台机器上。

八、Spark操作符

Spark提供了80多种操作符对集合进行操作。我们列举常用的一些供你建立一点基本概念, 以便了解Spark可以支持什么:

变换

变换操作总是获得一个新的RDD:

  • map(func) : 将原始数据集的每一个记录使用传入的函数func ,映射为一个新的记录,并返回新的RDD。
  • filter(func) : 返回一个新的RDD,仅包含那些符合条件的记录,即func返回true 。
  • flatMap(func) : 和map类似,只是原始记录的一条可能被映射为新的RDD中的多条。
  • union(otherDataset) : 合并两个RDD,返回一个新的RDD 。
  • intersection(otherDataset):返回一个新的RDD,仅包含两个RDD共有的记录。

动作

动作操作总是获得一个本地数据,这意味着控制权回到你的程序了:

  • reduce(func) : 使用func对RDD的记录进行聚合。
  • collect() : 返回RDD中的所有记录
  • count() : 返回RDD中的记录总数

网站上有对应每一小节的在线练习大家可以去试试。

关于spark的一些简单认识。的更多相关文章

  1. Spark的Streaming和Spark的SQL简单入门学习

    1.Spark Streaming是什么? a.Spark Streaming是什么? Spark Streaming类似于Apache Storm,用于流式数据的处理.根据其官方文档介绍,Spark ...

  2. Spark安装和简单示例

    spark的安装 先到官网下载安装包 注意第二项要选择和自己hadoop版本相匹配的spark版本,然后在第4项点击下载.若无图形界面,可用windows系统下载完成后传送到centos中. 本例中安 ...

  3. spark sql的简单操作

    测试数据 sparkStu.text zhangxs chenxy wangYr teacher wangx teacher sparksql { ,"job":"che ...

  4. Spark Streaming的简单介绍

    本文讲解Spark流数据处理之Spark Streaming.本文的写作时值Spark 1.6.2发布之际,Spark 2.0预览版也已发布,Spark发展如此迅速,请随时关注Spark Stream ...

  5. spark mllib lda 简单示例

    舆情系统每日热词用到了lda主题聚类 原先的版本是python项目,分词应用Jieba,LDA应用Gensim 项目工作良好 有以下几点问题 1 舆情产品基于elasticsearch大数据,es内应 ...

  6. spark单机模式简单搭建

    待安装列表hadoophivescalaspark一.环境变量配置:~/.bash_profilePATH=$PATH:$HOME/bin export PATH JAVA_HOME=/usr/loc ...

  7. Spark Streaming socketTextStream简单demo

    正文 SparkStreaming的入口是StreamingContext,通过scala实现 一个简单的实时获取数据.代码SparkStreaming官网也可以找到. object SocketDS ...

  8. Spark RDD Action 简单用例(二)

    foreach(f: T => Unit) 对RDD的所有元素应用f函数进行处理,f无返回值./** * Applies a function f to all elements of this ...

  9. Spark RDD Action 简单用例(一)

    collectAsMap(): Map[K, V] 返回key-value对,key是唯一的,如果rdd元素中同一个key对应多个value,则只会保留一个./** * Return the key- ...

随机推荐

  1. About_PHP_验证码的生成

    验证码就是一张图片,用到几个关键字: <?php session_start(); $arr = array( 'a','b','c','d','e','f','g','h','i','j',' ...

  2. <三>JDBC_面向对象思想的体现

    JDBCTools.java import java.io.InputStream;import java.sql.Connection;import java.sql.DriverManager;i ...

  3. 常用Oracle函数记录

    1. Oracle的replace函数与translate函数 replace函数是在字符串级别的代替,对应字符串一一替换 SQL> SELECT REPLACE('accd','cd','ef ...

  4. 实战Java虚拟机之四:提升性能,禁用System.gc() ?

    今天开始实战Java虚拟机之四:"禁用System.gc()". 总计有5个系列 实战Java虚拟机之一“堆溢出处理” 实战Java虚拟机之二“虚拟机的工作模式” 实战Java虚拟 ...

  5. 分享一个前辈的NPOIhelper

    即拿即用: 首先要下载npoi的dll,此不赘述,接着添加引用: using NPOI.HPSF; using NPOI.HSSF.UserModel; using NPOI.SS.UserModel ...

  6. iOS圆饼图和圆环的绘制,并且添加引线

    在开发中经常遇到统计之类的需求,特此封装了一个简单的圆饼图和圆环图,效果图如下 代码下载地址:https://github.com/minyahui/MYHCricleView.git

  7. Thread-Safe Resource Manager

    http://php.net/manual/en/internals2.memory.tsrm.php When PHP is built with Thread Safety enabled, th ...

  8. source insight 编程风格(持续更新)

    1.字体Source Code Pro 出身于豪门Adobe,从名字上来看就知道是转为编码而生的.基本上也是拥有前面所提的编程字体的所有要素的.这个字体基本上具有编程字体所需的所有要素:等宽.支持Cl ...

  9. Raspberry pi 添加vnc远程桌面控制

    // 安装服务 apt-get install tightvncserver // 设置连接密码 vncpasswd // 在端口1处开启服务 tightvncserver :1

  10. Redis 3.2 Linux 环境集群搭建与java操作

    redis 采用 redis-3.2.4 版本. 安装过程 1. 下载并解压 cd /usr/local wget http://download.redis.io/releases/redis-3. ...