题意:平面上有n个点(1<=N<=1000),你的任务是让所有n个点连通,为此, 你可以新建一些边,费用等于两个端点的欧几里得距离的平方。另外还有q(0<=q<=8)个套餐(数量小,可枚举),可以购买,如果你购买了第i个套餐,该套餐 中的所有结点将变得相互连通,第i个套餐的花费为ci。

分析:按照刘汝佳的思路做的。首先求一次本身的最小生成树值,然后枚举购买的套餐(二进制枚举),每次购买了之后,将其权值设为0,并且加进最小生成树。

 #include<cstdio>
#include<algorithm>
#include<cstring>
#define ll long long
using namespace std;
const int maxn=;
int x[maxn],y[maxn],p[maxn];
#define repu(i, a, b) for(int i = (a); i < (b); i++)
int bb[];
int tran(int h)
{
int i = ;
while(h)
{
bb[i] = h%;
i++;
h /= ;
}
return i;
}
int Find(int x)
{
return p[x]==x?x:p[x]=Find(p[x]);
}
struct edge
{
int u,v,w;
bool operator<(const edge&a)
const
{
return w<a.w;
}
} _e[maxn*maxn],e[maxn];
int q[][maxn],c[],t[];
int n,m,r,cnt;
void init()
{
m=cnt=;
}
ll kruscal()
{
ll ret=;
for(int i=; i<n; i++)///一共就只考虑n-1条边
{
int x=Find(e[i].u),y=Find(e[i].v);
if(x!=y)
{
ret += e[i].w;
p[x]=y;
}
}
return ret;
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
init();
scanf("%d%d",&n,&r);
repu(i,,r)
{
scanf("%d%d",&t[i],&c[i]);
repu(j,,t[i]+)
scanf("%d",&q[i][j]);
}
repu(i,,n+)
scanf("%d%d",&x[i],&y[i]),p[i]=i;
repu(i,,n)
repu(j,i+,n+)
_e[++m]=(edge)
{
i,j,(x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j])
};
sort(_e+,_e+m+);
ll ans=;
repu(i,,m+)
{
int x = Find(_e[i].u),y = Find(_e[i].v);
if(x != y)
{
///自己没能想到的方案:
///存下最小生成树的边,而且每次求最小生成树的时候就直接用这些边求
e[++cnt]=_e[i];
ans+=_e[i].w;
p[x]=y;
}
}///本身的最小生成树
repu(b,,<<r)
{
int tt = tran(b);
ll ansx = ;
repu(i,,n+) p[i] = i;
repu(i,,tt)
{
if(bb[i])///如果是1就选该套餐
{
ansx += c[i];///枚举加哪个套餐,二进制枚举,最多就是2^8个
repu(j,,t[i]+)
{
int xx = Find(q[i][j-]);
int yy = Find(q[i][j]);
p[xx] = yy;///加入最小生成树
}
}
}
ansx += kruscal();
ans=min(ans,ansx);
}
printf("%lld\n",ans);
if(T) printf("\n");
}
return ;
}

每次求最小生成树的时候,都会加进去几条权值是0的边,一定会被选,剩下的边也一定会从裸求的最小生成树种找到。第一求的时候舍弃的边可以永远舍弃。

UVA 1151二进制枚举子集 + 最小生成树的更多相关文章

  1. 紫书 例题 11-3 UVa 1151 (有边集的最小生成树+二进制枚举子集)

    标题指的边集是说这道题的套餐, 是由几条边构成的. 思路是先做一遍最小生成树排除边, 因为如果第一次做没有加入的边, 到后来新加入了很多权值为0的边,这些边肯定排在最前面,然后这条边的前面的那些边肯定 ...

  2. UVA - 1151 Buy or Build (买还是建)(并查集+二进制枚举子集)

    题意:平面上有n个点(1<=n<=1000),你的任务是让所有n个点连通.可以新建边,费用等于两端点欧几里德距离的平方.也可以购买套餐(套餐中的点全部连通).问最小费用. 分析: 1.先将 ...

  3. UVA1354-Mobile Computing(二进制枚举子集)

    Problem UVA1354-Mobile Computing Accept:267  Submit:2232 Time Limit: 3000 mSec  Problem Description ...

  4. BZOJ1688|二进制枚举子集| 状态压缩DP

    Disease Manangement 疾病管理 Description Alas! A set of D (1 <= D <= 15) diseases (numbered 1..D) ...

  5. Buy or Build UVA - 1151 Kruskal+枚举

    题意: 大概意思是有 n 个点,现在有 q 个方案 ,第 i 个方案耗费为 ci ,使 Ni 个点联通 ,当然也可以直接使两点联通 ,现求最小生成树的代价. 两点直接联通的代价是欧几里得距离的平方: ...

  6. 杭电多校第十场 hdu6435 CSGO 二进制枚举子集

    CSGO Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Others)Total Subm ...

  7. uva 11088 暴力枚举子集/状压dp

    https://vjudge.net/problem/UVA-11088 对于每一种子集的情况暴力枚举最后一个三人小组取最大的一种情况即可,我提前把三个人的子集情况给筛出来了. 即 f[S]=MAX{ ...

  8. UVA 1151 买还是建(最小生成树)

    买还是建 紫书P358 [题目链接]买还是建 [题目类型]最小生成树 &题解: 这题真的心累,看了3天,最后照着码还是wa,先放lrj代码,以后再看吧 &代码: // UVa1151 ...

  9. 南阳OJ-91-阶乘之和---二进制枚举(入门)

    题目链接:http://acm.nyist.edu.cn/JudgeOnline/problem.php?pid=91 题目大意: 给你一个非负数整数n,判断n是不是一些数(这些数不允许重复使用,且为 ...

随机推荐

  1. 51nod1305 Pairwise Sum and Divide

    题目链接:51nod 1305 Pairwise Sum and Divide 看完题我想都没想就直接暴力做了,AC后突然就反应过来了... Floor( (a+b)/(a*b) )=Floor( ( ...

  2. OptionsMenu

    菜单是用户界面中最常见的元素之一,使用非常频繁,在Android中,菜单被分为如下三种,选项菜单(OptionsMenu).上下文菜单(ContextMenu)和子菜单(SubMenu),今天这讲是O ...

  3. ORBSLAM2与OPENCV3.1.0出错解决办法

    用opencv3.1.0做ORBSLAM2运行一下命令时cd ORB_SLAM2 chmod +x build.sh ./build.sh出错:/usr/bin/ld: CMakeFiles/mono ...

  4. EF6 CodeFirst+Repository+Ninject+MVC4+EasyUI实践(一)

    前言 本系列源自对EF6 CodeFirst的探索,但后来发现在自己项目中构建的时候遇到了一些问题以及一些解决方法,因此想作为一个系列写下来. 本系列并不是教你怎么做架构设计,但可以参照一下里面的方法 ...

  5. LCM在Kernel中的代码分析

    lcm的分析首先是mtkfb.c 1.mtk_init中platform_driver_register(&mtkfb_driver)注册平台驱动 panelmaster_init(); DB ...

  6. Linux版Matlab R2015b的bug——脚本运行的陷阱(未解决)

    0 系统+软件版本 系统:CentOS 6.7 x64, 内核 2.6.32-573.el6.x86_64软件:Matlab R2015b(包括威锋网和东北大学ipv6下载的资源,都测试过) 1 脚本 ...

  7. js生成[n,m]的随机数 以及实际运用

    Math.ceil();  //向上取整. Math.floor();  //向下取整. Math.round();  //四舍五入. Math.random();  //0.0 ~ 1.0 之间的一 ...

  8. lombok介绍

    Lombok是一种JavaArchive(JAR)文件,可用来消除Java代码的冗长.在写代码时,可以通过这个插件消除各种getter和setter,toString等常用方法. lombok 注解: ...

  9. shell脚本连接、读写、操作mysql数据库实例

    本文介绍了如何在shell中读写mysql数据库.主要介绍了如何在shell 中连接mysql数据库,如何在shell中创建数据库,创建表,插入csv文件,读取mysql数据库,导出mysql数据库为 ...

  10. keil uvision3 添加 STC单片机库

    本人工作以来,一直从事仪表程序维护和开发工作,使用的清一色的都是microchip单片机。现在弄一个光立方的小玩意,需要用STC单片机。它有特点很明显,方便、资料多、最重要的一点便宜。 网上下载的ke ...