题意:平面上有n个点(1<=N<=1000),你的任务是让所有n个点连通,为此, 你可以新建一些边,费用等于两个端点的欧几里得距离的平方。另外还有q(0<=q<=8)个套餐(数量小,可枚举),可以购买,如果你购买了第i个套餐,该套餐 中的所有结点将变得相互连通,第i个套餐的花费为ci。

分析:按照刘汝佳的思路做的。首先求一次本身的最小生成树值,然后枚举购买的套餐(二进制枚举),每次购买了之后,将其权值设为0,并且加进最小生成树。

 #include<cstdio>
#include<algorithm>
#include<cstring>
#define ll long long
using namespace std;
const int maxn=;
int x[maxn],y[maxn],p[maxn];
#define repu(i, a, b) for(int i = (a); i < (b); i++)
int bb[];
int tran(int h)
{
int i = ;
while(h)
{
bb[i] = h%;
i++;
h /= ;
}
return i;
}
int Find(int x)
{
return p[x]==x?x:p[x]=Find(p[x]);
}
struct edge
{
int u,v,w;
bool operator<(const edge&a)
const
{
return w<a.w;
}
} _e[maxn*maxn],e[maxn];
int q[][maxn],c[],t[];
int n,m,r,cnt;
void init()
{
m=cnt=;
}
ll kruscal()
{
ll ret=;
for(int i=; i<n; i++)///一共就只考虑n-1条边
{
int x=Find(e[i].u),y=Find(e[i].v);
if(x!=y)
{
ret += e[i].w;
p[x]=y;
}
}
return ret;
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
init();
scanf("%d%d",&n,&r);
repu(i,,r)
{
scanf("%d%d",&t[i],&c[i]);
repu(j,,t[i]+)
scanf("%d",&q[i][j]);
}
repu(i,,n+)
scanf("%d%d",&x[i],&y[i]),p[i]=i;
repu(i,,n)
repu(j,i+,n+)
_e[++m]=(edge)
{
i,j,(x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j])
};
sort(_e+,_e+m+);
ll ans=;
repu(i,,m+)
{
int x = Find(_e[i].u),y = Find(_e[i].v);
if(x != y)
{
///自己没能想到的方案:
///存下最小生成树的边,而且每次求最小生成树的时候就直接用这些边求
e[++cnt]=_e[i];
ans+=_e[i].w;
p[x]=y;
}
}///本身的最小生成树
repu(b,,<<r)
{
int tt = tran(b);
ll ansx = ;
repu(i,,n+) p[i] = i;
repu(i,,tt)
{
if(bb[i])///如果是1就选该套餐
{
ansx += c[i];///枚举加哪个套餐,二进制枚举,最多就是2^8个
repu(j,,t[i]+)
{
int xx = Find(q[i][j-]);
int yy = Find(q[i][j]);
p[xx] = yy;///加入最小生成树
}
}
}
ansx += kruscal();
ans=min(ans,ansx);
}
printf("%lld\n",ans);
if(T) printf("\n");
}
return ;
}

每次求最小生成树的时候,都会加进去几条权值是0的边,一定会被选,剩下的边也一定会从裸求的最小生成树种找到。第一求的时候舍弃的边可以永远舍弃。

UVA 1151二进制枚举子集 + 最小生成树的更多相关文章

  1. 紫书 例题 11-3 UVa 1151 (有边集的最小生成树+二进制枚举子集)

    标题指的边集是说这道题的套餐, 是由几条边构成的. 思路是先做一遍最小生成树排除边, 因为如果第一次做没有加入的边, 到后来新加入了很多权值为0的边,这些边肯定排在最前面,然后这条边的前面的那些边肯定 ...

  2. UVA - 1151 Buy or Build (买还是建)(并查集+二进制枚举子集)

    题意:平面上有n个点(1<=n<=1000),你的任务是让所有n个点连通.可以新建边,费用等于两端点欧几里德距离的平方.也可以购买套餐(套餐中的点全部连通).问最小费用. 分析: 1.先将 ...

  3. UVA1354-Mobile Computing(二进制枚举子集)

    Problem UVA1354-Mobile Computing Accept:267  Submit:2232 Time Limit: 3000 mSec  Problem Description ...

  4. BZOJ1688|二进制枚举子集| 状态压缩DP

    Disease Manangement 疾病管理 Description Alas! A set of D (1 <= D <= 15) diseases (numbered 1..D) ...

  5. Buy or Build UVA - 1151 Kruskal+枚举

    题意: 大概意思是有 n 个点,现在有 q 个方案 ,第 i 个方案耗费为 ci ,使 Ni 个点联通 ,当然也可以直接使两点联通 ,现求最小生成树的代价. 两点直接联通的代价是欧几里得距离的平方: ...

  6. 杭电多校第十场 hdu6435 CSGO 二进制枚举子集

    CSGO Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Others)Total Subm ...

  7. uva 11088 暴力枚举子集/状压dp

    https://vjudge.net/problem/UVA-11088 对于每一种子集的情况暴力枚举最后一个三人小组取最大的一种情况即可,我提前把三个人的子集情况给筛出来了. 即 f[S]=MAX{ ...

  8. UVA 1151 买还是建(最小生成树)

    买还是建 紫书P358 [题目链接]买还是建 [题目类型]最小生成树 &题解: 这题真的心累,看了3天,最后照着码还是wa,先放lrj代码,以后再看吧 &代码: // UVa1151 ...

  9. 南阳OJ-91-阶乘之和---二进制枚举(入门)

    题目链接:http://acm.nyist.edu.cn/JudgeOnline/problem.php?pid=91 题目大意: 给你一个非负数整数n,判断n是不是一些数(这些数不允许重复使用,且为 ...

随机推荐

  1. JS添加父节点的方法。

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  2. ThinkPHP 3.2.3(四)架构之多层MVC

    一.模型(Model)层 1.ThinkPHP支持多层Model,不同的模型层都继承自系统的Model类.   2.模型的多层通过目录结构和命名规范区分. 例如:在某个项目设计中需要区分数据层.逻辑层 ...

  3. 2015-01-19 .Net 软件工程师 笔试题

    填空题 1.String是__类型(值类型或引用类型) 2.int的基类是__ 3.实现__的类,可以应用foreach语句 4.要输出一段XML文档,用__类来实现能够确保输出正确格式的XML,输出 ...

  4. Web APP开发技巧总结(转)

    一.META/LINK相关: 1.百度禁止转码 通过百度手机打开网页时,百度可能会对你的网页进行转码,往你页面贴上它的广告,非常之恶心.不过我们可以通过这个meta标签来禁止它: <meta h ...

  5. SQLSERVER和ORACLE系统表获取表名 列名以及列的注释

    在工作中从数据库取的数据要导出来,但是发现导出的EXCEL中列名都是字段名(英文),为此搜集资料怎么把字段名变为中文名称,而发现ORACLE和SQLSERVER(用的SQLSERVER2008R2)又 ...

  6. React Native 学习-01

    React Native 学习 (学习版本 0.39) 一.环境配置 二.IDE选择 webstorm 1.webstorm配置 ①.首先是可以选择使用汉化包汉化.eu68 ②.安装插件和外部库. 由 ...

  7. 手机客户端UI测试常见的测试点

    1.各种分辨率下,显示正常.现市场上主流的塞班V3系统手机为240*320.320*240.WM系统主要为240*320.320*480.Android系统主要为320*480,Iphone系统为32 ...

  8. [高斯消元] POJ 2345 Central heating

    Central heating Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 614   Accepted: 286 Des ...

  9. android studio 导入一个已有的android studio project作为lib使用

    android studio 导入一个已有的android studio project作为lib使用 新项目来了. 需要搭建框架. android studio对我来说还是很陌生,之前一个项目在同事 ...

  10. Eclipse JUnit 生成报告

    http://blog.sina.com.cn/s/blog_8af106960102v6qh.html 对Eclipse的工程写单元测试: 第一步: 1. 一个工程有多个测试类,将测试类放到一个测试 ...