如果直接使用Elasticsearch的朋友在处理中文内容的搜索时,肯定会遇到很尴尬的问题——中文词语被分成了一个一个的汉字,当用Kibana作图的时候,按照term来分组,结果一个汉字被分成了一组。

这是因为使用了Elasticsearch中默认的标准分词器,这个分词器在处理中文的时候会把中文单词切分成一个一个的汉字,因此引入中文的分词器就能解决这个问题。

本篇文章按照下面的内容进行描述:

  • 分词器的作用
  • 安装IK
  • 简单的测试
  • 模拟测试
  • 安装elasticsearch-analysis-pinyin
  • 简单的测试
  • 模拟测试

分词器的作用

分词顾名思义,就是把一句话分成一个一个的词。这个概念在搜索中很重要,比如 This is a banana. 如果按照普通的空格来分词,分成this,is,a,banana,的出来的a其实对我们并没有什么用处。因此需要注意下面的问题:

  • 1 区分停顿词(a,or,and这种都属于停顿词)
  • 2 大小写转换(Bananabanana)
  • 3 时态的转换....

具体的算法可以参考http://tartarus.org/~martin/PorterStemmer/,对照的词语可以参考这里http://snowball.tartarus.org/algorithms/porter/diffs.txt

相比中文,就复杂的度了。因为中文不能单纯的依靠空格,标点这种进行分词。就比如中华人民共和国国民,不能简单的分成一个词,也不能粗暴的分成中华人民共和国国民人民中华这些也都算一个词!

因此常见的分词算法就是拿一个标准的词典,关键词都在这个词典里面。然后按照几种规则去查找有没有关键词,比如:

  • 正向最大匹配(从左到右)
  • 逆向最大匹配(从右到左)
  • 最少切分
  • 双向匹配(从左扫描一次,从右扫描一次)

IK,elasticsearch-analysis-ik提供了两种方式,ik_smart就是最少切分,ik_max_word则为细粒度的切分(可能是双向,没看过源码)

了解了分词器的背景后,就可以看一下如何在Elasticsearch重安装分词器了。

安装IK

github中下载相应的代码,比如我的最新版本2.4.0就没有对应的ik版本,不用担心,只需要修改pom.xml就可以了:

<properties>
<!-- 这里的版本号,修改成你对应的版本就行了。
不过最好不要跨度太大,相近的版本可能没有问题,但是跨度太大的版本,这样做就不保证好使了-->
<elasticsearch.version>2.4.0</elasticsearch.version>
<maven.compiler.target>1.7</maven.compiler.target>
<elasticsearch.assembly.descriptor>${project.basedir}/src/main/assemblies/plugin.xml</elasticsearch.assembly.descriptor>
<elasticsearch.plugin.name>analysis-ik</elasticsearch.plugin.name>
<elasticsearch.plugin.classname>org.elasticsearch.plugin.analysis.ik.AnalysisIkPlugin</elasticsearch.plugin.classname>
<elasticsearch.plugin.jvm>true</elasticsearch.plugin.jvm>
<tests.rest.load_packaged>false</tests.rest.load_packaged>
<skip.unit.tests>true</skip.unit.tests>
<gpg.keyname>4E899B30</gpg.keyname>
<gpg.useagent>true</gpg.useagent>
</properties>

下载后,执行mvn package,进行打包:

├─config
├─src
└─target
├─archive-tmp
├─classes
├─generated-sources
├─maven-archiver
├─maven-status
├─releases
│ └─elasticsearch-analysis-ik-1.9.5.zip
└─surefire

编译完成后,可以在target/releases目录下找到对应的zip包。

解压zip包,复制到elasticsearch-root-path/plugins/ik下即可。

[root@hadoop-master ik]# ll
total 1428
-rw-r--r-- 1 root root 263965 Sep 26 15:03 commons-codec-1.9.jar
-rw-r--r-- 1 root root 61829 Sep 26 15:03 commons-logging-1.2.jar
drwxr-xr-x 3 root root 4096 Sep 26 16:11 config
-rw-r--r-- 1 root root 56023 Sep 26 15:03 elasticsearch-analysis-ik-1.9.5.jar
-rw-r--r-- 1 root root 736658 Sep 26 15:03 httpclient-4.5.2.jar
-rw-r--r-- 1 root root 326724 Sep 26 15:03 httpcore-4.4.4.jar
-rw-r--r-- 1 root root 2666 Sep 26 15:03 plugin-descriptor.properties
[root@hadoop-master ik]# pwd
/usr/elk/elasticsearch-2.4.0/plugins/ik

拷贝后,重启elasticsearch就可以使用分词器了。

最简单的测试

这里使用_analyze api对中文段落进行分词,测试一下:

GET _analyze
{
"analyzer":"ik_max_word",
"text":"中华人民共和国国歌"
}

可以看到ik尽可能多的切分的单词:

{
"tokens": [
{
"token": "中华人民共和国",
"start_offset": 0,
"end_offset": 7,
"type": "CN_WORD",
"position": 0
},
{
"token": "中华人民",
"start_offset": 0,
"end_offset": 4,
"type": "CN_WORD",
"position": 1
},
{
"token": "中华",
"start_offset": 0,
"end_offset": 2,
"type": "CN_WORD",
"position": 2
},
{
"token": "华人",
"start_offset": 1,
"end_offset": 3,
"type": "CN_WORD",
"position": 3
},
{
"token": "人民共和国",
"start_offset": 2,
"end_offset": 7,
"type": "CN_WORD",
"position": 4
},
{
"token": "人民",
"start_offset": 2,
"end_offset": 4,
"type": "CN_WORD",
"position": 5
},
{
"token": "共和国",
"start_offset": 4,
"end_offset": 7,
"type": "CN_WORD",
"position": 6
},
{
"token": "共和",
"start_offset": 4,
"end_offset": 6,
"type": "CN_WORD",
"position": 7
},
{
"token": "国",
"start_offset": 6,
"end_offset": 7,
"type": "CN_CHAR",
"position": 8
},
{
"token": "国歌",
"start_offset": 7,
"end_offset": 9,
"type": "CN_WORD",
"position": 9
}
]
}

如果使用ik_smart,则会尽可能少的返回词语:

{
"tokens": [
{
"token": "中华人民共和国",
"start_offset": 0,
"end_offset": 7,
"type": "CN_WORD",
"position": 0
},
{
"token": "国歌",
"start_offset": 7,
"end_offset": 9,
"type": "CN_WORD",
"position": 1
}
]
}

模拟测试

我这里直接在elastic Sense中进行测试的(强烈推荐这个插件,非常好用,不过输入中文的时候,有点BUG)

第一步,创建一个空的索引

PUT test
{ }

如果你用的是curl,可以执行curl -XPUT localhost:9200/test

第二步,设置映射类型

POST test/test/_mapping
{
"test": {
"_all": {
"analyzer": "ik_max_word",
"search_analyzer": "ik_max_word",
"term_vector": "no",
"store": "false"
},
"properties": {
"content": {
"type": "string",
"store": "no",
"term_vector": "with_positions_offsets",
"analyzer": "ik_max_word",
"search_analyzer": "ik_max_word",
"include_in_all": "true",
"boost": 8
}
}
}
}

上面的命令,是定义test索引下test类型的映射。其中定义了_all字段的分析方法,以及content属性的分析方法。

这里介绍下什么是_all字段,其实_all字段是为了在不知道搜索哪个字段时,使用的。es会把所有的字段(除非你手动设置成false),都放在_all中,然后通过分词器去解析。当你使用query_string的时候,默认就在这个_all字段上去做查询,而不需要挨个字段遍历,节省了时间。

properties中定义了特定字段的分析方式。在上面的例子中,仅仅设置了content的分析方法。

  • type,字段的类型为string,只有string类型才涉及到分词,像是数字之类的是不需要分词的。
  • store,定义字段的存储方式,no代表不单独存储,查询的时候会从_source中解析。当你频繁的针对某个字段查询时,可以考虑设置成true。
  • term_vector,定义了词的存储方式,with_position_offsets,意思是存储词语的偏移位置,在结果高亮的时候有用。
  • analyzer,定义了索引时的分词方法
  • search_analyzer,定义了搜索时的分词方法
  • include_in_all,定义了是否包含在_all字段中
  • boost,是跟计算分值相关的。

设置完成后,添加一个文档

POST test/test/1
{
"test":"美国留给伊拉克的是个烂摊子吗"
} POST test/test/2
{
"content":"公安部:各地校车将享最高路权吗"
} POST test/test/3
{
"content":"中韩渔警冲突调查:韩警平均每天扣1艘中国渔船"
} POST test/test/4
{
"content":"中国驻洛杉矶领事馆遭亚裔男子枪击 嫌犯已自首"
}

最后,执行查询进行测试

GET test/_search
{
"query" : { "term" : { "content" : "中国" }},
"highlight" : {
"pre_tags" : ["<tag1>", "<tag2>"],
"post_tags" : ["</tag1>", "</tag2>"],
"fields" : {
"content" : {}
}
}
}

得到返回结果:

{
"took": 4,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 2,
"max_score": 1.5,
"hits": [
{
"_index": "test",
"_type": "test",
"_id": "4",
"_score": 1.5,
"_source": {
"content": "中国驻洛杉矶领事馆遭亚裔男子枪击 嫌犯已自首"
},
"highlight": {
"content": [
"<tag1>中国</tag1>驻洛杉矶领事馆遭亚裔男子枪击 嫌犯已自首"
]
}
},
{
"_index": "test",
"_type": "test",
"_id": "3",
"_score": 0.53699243,
"_source": {
"content": "中韩渔警冲突调查:韩警平均每天扣1艘中国渔船"
},
"highlight": {
"content": [
"中韩渔警冲突调查:韩警平均每天扣1艘<tag1>中国</tag1>渔船"
]
}
}
]
}
}

安装elasticsearch-analysis-pinyin分词器

pinyin分词器可以让用户输入拼音,就能查找到相关的关键词。比如在某个商城搜索中,输入shuihu,就能匹配到水壶。这样的体验还是非常好的。

pinyin分词器的安装与IK是一样的,这里就省略掉了。下载的地址参考github.

这个分词器在1.8版本中,提供了两种分词规则:

  • pinyin,就是普通的把汉字转换成拼音;
  • pinyin_first_letter,提取汉字的拼音首字母

简单的测试

首先创建索引,并创建分词器:

PUT medcl
{
"index" : {
"analysis" : {
"analyzer" : {
"pinyin_analyzer" : {
"tokenizer" : "my_pinyin",
"filter" : "word_delimiter"
}
},
"tokenizer" : {
"my_pinyin" : {
"type" : "pinyin",
"first_letter" : "none",
"padding_char" : " "
}
}
}
}
}

然后使用analyze api,进行测试

GET medcl/_analyze
{
"text":"刘德华",
"analyzer":"pinyin_analyzer"
}

可以得到结果:

{
"tokens": [
{
"token": "liu",
"start_offset": 0,
"end_offset": 3,
"type": "word",
"position": 0
},
{
"token": "de",
"start_offset": 0,
"end_offset": 3,
"type": "word",
"position": 1
},
{
"token": "hua",
"start_offset": 0,
"end_offset": 3,
"type": "word",
"position": 2
}
]
}

如果分词器设置为pinyin_first_letter,则分析的结果为:

{
"tokens": [
{
"token": "ldh",
"start_offset": 0,
"end_offset": 3,
"type": "word",
"position": 0
}
]
}

模拟测试

如果索引已经存在,需要先关闭索引

POST medcl/_close
{ }

然后设置分词器配置

PUT medcl/_settings
{
"index" : {
"analysis" : {
"analyzer" : {
"pinyin_analyzer" : {
"tokenizer" : "my_pinyin",
"filter" : ["word_delimiter","nGram"]
}
},
"tokenizer" : {
"my_pinyin" : {
"type" : "pinyin",
"first_letter" : "prefix",
"padding_char" : " "
}
}
}
}
}

打开索引

POST medcl/_open
{ }

定义映射类型

POST medcl/folks/_mapping
{
"folks": {
"properties": {
"name": {
"type": "multi_field",
"fields": {
"name": {
"type": "string",
"store": "no",
"term_vector": "with_positions_offsets",
"analyzer": "pinyin_analyzer",
"boost": 10
},
"primitive": {
"type": "string",
"store": "yes",
"analyzer": "keyword"
}
}
}
}
}
}

提交样例数据

POST medcl/folks/1
{
"name":"刘德华"
}

执行查询

GET medcl/folks/_search
{
"query": {"match": {
"name": "l d hua"
}}
}

这里搜liu de hua,ldh,l de hua都能匹配到,还是很强大滴。

得到结果

{
"took": 7,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 1,
"max_score": 7.408082,
"hits": [
{
"_index": "medcl",
"_type": "folks",
"_id": "1",
"_score": 7.408082,
"_source": {
"name": "刘德华"
}
}
]
}
}

参考

如何在Elasticsearch中安装中文分词器(IK+pinyin)的更多相关文章

  1. 如何在Elasticsearch中安装中文分词器(IK)和拼音分词器?

    声明:我使用的Elasticsearch的版本是5.4.0,安装分词器前请先安装maven 一:安装maven https://github.com/apache/maven 说明: 安装maven需 ...

  2. 如何给Elasticsearch安装中文分词器IK

    安装Elasticsearch安装中文分词器IK的步骤: 1. 停止elasticsearch 2.2的服务 2. 在以下地址下载对应的elasticsearch-analysis-ik插件安装包(版 ...

  3. ElasticSearch安装中文分词器IK

    1.安装IK分词器,下载对应版本的插件,elasticsearch-analysis-ik中文分词器的开发者一直进行维护的,对应着elasticsearch的版本,所以选择好自己的版本即可.IKAna ...

  4. Elasticsearch如何安装中文分词插件ik

    elasticsearch-analysis-ik 是一款中文的分词插件,支持自定义词库. 安装步骤: 1.到github网站下载源代码,网站地址为:https://github.com/medcl/ ...

  5. Solr安装中文分词器IK

    安装环境 jdk1.7 solr-4.10.3.tgz KAnalyzer2012FF_u1.jar tomcat7 VM虚拟机redhat6.5-x64:192.168.1.201 Xshell4 ...

  6. ElasticSearch安装中文分词器IKAnalyzer

    # ElasticSearch安装中文分词器IKAnalyzer  本篇主要讲解如何在ElasticSearch中安装中文分词器IKAnalyzer,拆分的每个词都是我们熟知的词语,从而建立词汇与文档 ...

  7. ElasticSearch 安装中文分词器

    1.安装中文分词器IK 下载地址:https://github.com/medcl/elasticsearch-analysis-ik 在线下载安装: elasticsearch-plugin.bat ...

  8. 转:solr6.0配置中文分词器IK Analyzer

    solr6.0中进行中文分词器IK Analyzer的配置和solr低版本中最大不同点在于IK Analyzer中jar包的引用.一般的IK分词jar包都是不能用的,因为IK分词中传统的jar不支持s ...

  9. 我与solr(六)--solr6.0配置中文分词器IK Analyzer

    转自:http://blog.csdn.net/linzhiqiang0316/article/details/51554217,表示感谢. 由于前面没有设置分词器,以至于查询的结果出入比较大,并且无 ...

随机推荐

  1. 死磕内存篇 --- JAVA进程和linux内存间的大小关系

    运行个JAVA 用sleep去hold住 package org.hjb.test; public class TestOnly { public static void main(String[] ...

  2. 富文本编辑器Simditor的简易使用

    最近打算自己做一个博客系统,并不打算使用帝国cms或者wordpress之类的做后台管理!自己处于学习阶段也就想把从前台到后台一起谢了.好了,废话不多说了,先来看看富文本编辑器SimDitor,这里是 ...

  3. Word/Excel 在线预览

    前言 近日项目中做到一个功能,需要上传附件后能够在线预览.之前也没做过这类似的,于是乎就查找了相关资料,.net实现Office文件预览大概有这几种方式: ① 使用Microsoft的Office组件 ...

  4. 【原创】免费申请SSL证书【用于HTTPS,即是把网站从HTTP改为HTTPS,加密传输数据,保护敏感数据】

    今天公司有个网站需要改用https访问,所以就用到SSL证书.由于沃通(以前我是在这里申请的)暂停了免费的SSL证书之后,其网站推荐了新的一个网站来申请证书,所以,今天因为刚好又要申请一个证书,所以, ...

  5. Spring中Bean的作用域、生命周期

                                   Bean的作用域.生命周期 Bean的作用域 Spring 3中为Bean定义了5中作用域,分别为singleton(单例).protot ...

  6. MySQL 系列(四)主从复制、备份恢复方案生产环境实战

    第一篇:MySQL 系列(一) 生产标准线上环境安装配置案例及棘手问题解决 第二篇:MySQL 系列(二) 你不知道的数据库操作 第三篇:MySQL 系列(三)你不知道的 视图.触发器.存储过程.函数 ...

  7. css元素水平居中和垂直居中的方式

    关于居中的问题,一直处于疑惑不解的状态,知道的几种方法好像也不是每一次都会起到作用,所以更加迷惑.主要是不清楚该 在什么情况下采用哪种解决方法,所以,整理了一些方法,梳理一下思路,做一个总结. 1. ...

  8. .NET面试题集锦①(Part一)

    一.前言部分 文中的问题及答案多收集整理自网络,不保证100%准确,还望斟酌采纳. 1.面向对象的思想主要包括什么? 答:任何事物都可以理解为对象,其主要特征: 继承.封装.多态.特点:代码好维护,安 ...

  9. 微信小程序开发日记——高仿知乎日报(上)

    本人对知乎日报是情有独钟,看我的博客和github就知道了,写了几个不同技术类型的知乎日报APP 要做微信小程序首先要对html,css,js有一定的基础,还有对微信小程序的API也要非常熟悉 我将该 ...

  10. AlloyTouch实战--60行代码搞定QQ看点资料卡

    原文链接:https://github.com/AlloyTeam/AlloyTouch/wiki/kandian 先验货 访问DEMO你也可以点击这里 源代码可以点击这里 如你体验所见,流程的滚动的 ...