概要

本章是JUC系列的ConcurrentHashMap篇。内容包括:
ConcurrentHashMap介绍ConcurrentHashMap原理和数据结构
ConcurrentHashMap函数列表
ConcurrentHashMap源码分析(JDK1.7.0_40版本)
ConcurrentHashMap示例

转载请注明出处:http://www.cnblogs.com/skywang12345/p/3498537.html

ConcurrentHashMap介绍

ConcurrentHashMap是线程安全的哈希表。HashMap, Hashtable, ConcurrentHashMap之间的关联如下:

  HashMap是非线程安全的哈希表,常用于单线程程序中。

  Hashtable是线程安全的哈希表,它是通过synchronized来保证线程安全的;即,多线程通过同一个“对象的同步锁”来实现并发控制。Hashtable在线程竞争激烈时,效率比较低(此时建议使用ConcurrentHashMap)!因为当一个线程访问Hashtable的同步方法时,其它线程就访问Hashtable的同步方法时,可能会进入阻塞状态。

  ConcurrentHashMap是线程安全的哈希表,它是通过“锁分段”来保证线程安全的。ConcurrentHashMap将哈希表分成许多片段(Segment),每一个片段除了保存哈希表之外,本质上也是一个“可重入的互斥锁”(ReentrantLock)。多线程对同一个片段的访问,是互斥的;但是,对于不同片段的访问,却是可以同步进行的。

关于HashMap,Hashtable以及ReentrantLock的更多内容,可以参考:
1. Java 集合系列10之 HashMap详细介绍(源码解析)和使用示例
2. Java 集合系列11之 Hashtable详细介绍(源码解析)和使用示例
3. Java多线程系列--“JUC锁”02之 互斥锁ReentrantLock

ConcurrentHashMap原理和数据结构

要想搞清ConcurrentHashMap,必须先弄清楚它的数据结构:

(01) ConcurrentHashMap继承于AbstractMap抽象类。
  (02) Segment是ConcurrentHashMap中的内部类,它就是ConcurrentHashMap中的“锁分段”对应的存储结构。ConcurrentHashMap与Segment是组合关系,1个ConcurrentHashMap对象包含若干个Segment对象。在代码中,这表现为ConcurrentHashMap类中存在“Segment数组”成员。
  (03) Segment类继承于ReentrantLock类,所以Segment本质上是一个可重入的互斥锁。
  (04) HashEntry也是ConcurrentHashMap的内部类,是单向链表节点,存储着key-value键值对。Segment与HashEntry是组合关系,Segment类中存在“HashEntry数组”成员,“HashEntry数组”中的每个HashEntry就是一个单向链表。

对于多线程访问对一个“哈希表对象”竞争资源,Hashtable是通过一把锁来控制并发;而ConcurrentHashMap则是将哈希表分成许多片段,对于每一个片段分别通过一个互斥锁来控制并发。ConcurrentHashMap对并发的控制更加细腻,它也更加适应于高并发场景!

ConcurrentHashMap函数列表

// 创建一个带有默认初始容量 (16)、加载因子 (0.75) 和 concurrencyLevel (16) 的新的空映射。
ConcurrentHashMap()
// 创建一个带有指定初始容量、默认加载因子 (0.75) 和 concurrencyLevel (16) 的新的空映射。
ConcurrentHashMap(int initialCapacity)
// 创建一个带有指定初始容量、加载因子和默认 concurrencyLevel (16) 的新的空映射。
ConcurrentHashMap(int initialCapacity, float loadFactor)
// 创建一个带有指定初始容量、加载因子和并发级别的新的空映射。
ConcurrentHashMap(int initialCapacity, float loadFactor, int concurrencyLevel)
// 构造一个与给定映射具有相同映射关系的新映射。
ConcurrentHashMap(Map<? extends K,? extends V> m) // 从该映射中移除所有映射关系
void clear()
// 一种遗留方法,测试此表中是否有一些与指定值存在映射关系的键。
boolean contains(Object value)
// 测试指定对象是否为此表中的键。
boolean containsKey(Object key)
// 如果此映射将一个或多个键映射到指定值,则返回 true。
boolean containsValue(Object value)
// 返回此表中值的枚举。
Enumeration<V> elements()
// 返回此映射所包含的映射关系的 Set 视图。
Set<Map.Entry<K,V>> entrySet()
// 返回指定键所映射到的值,如果此映射不包含该键的映射关系,则返回 null。
V get(Object key)
// 如果此映射不包含键-值映射关系,则返回 true。
boolean isEmpty()
// 返回此表中键的枚举。
Enumeration<K> keys()
// 返回此映射中包含的键的 Set 视图。
Set<K> keySet()
// 将指定键映射到此表中的指定值。
V put(K key, V value)
// 将指定映射中所有映射关系复制到此映射中。
void putAll(Map<? extends K,? extends V> m)
// 如果指定键已经不再与某个值相关联,则将它与给定值关联。
V putIfAbsent(K key, V value)
// 从此映射中移除键(及其相应的值)。
V remove(Object key)
// 只有目前将键的条目映射到给定值时,才移除该键的条目。
boolean remove(Object key, Object value)
// 只有目前将键的条目映射到某一值时,才替换该键的条目。
V replace(K key, V value)
// 只有目前将键的条目映射到给定值时,才替换该键的条目。
boolean replace(K key, V oldValue, V newValue)
// 返回此映射中的键-值映射关系数。
int size()
// 返回此映射中包含的值的 Collection 视图。
Collection<V> values()

ConcurrentHashMap源码分析(JDK1.7.0_40版本)

ConcurrentHashMap.java的完整源码如下:

 /*
* ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*/ /*
*
*
*
*
*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/publicdomain/zero/1.0/
*/ package java.util.concurrent;
import java.util.concurrent.locks.*;
import java.util.*;
import java.io.Serializable;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.ObjectStreamField; /**
* A hash table supporting full concurrency of retrievals and
* adjustable expected concurrency for updates. This class obeys the
* same functional specification as {@link java.util.Hashtable}, and
* includes versions of methods corresponding to each method of
* <tt>Hashtable</tt>. However, even though all operations are
* thread-safe, retrieval operations do <em>not</em> entail locking,
* and there is <em>not</em> any support for locking the entire table
* in a way that prevents all access. This class is fully
* interoperable with <tt>Hashtable</tt> in programs that rely on its
* thread safety but not on its synchronization details.
*
* <p> Retrieval operations (including <tt>get</tt>) generally do not
* block, so may overlap with update operations (including
* <tt>put</tt> and <tt>remove</tt>). Retrievals reflect the results
* of the most recently <em>completed</em> update operations holding
* upon their onset. For aggregate operations such as <tt>putAll</tt>
* and <tt>clear</tt>, concurrent retrievals may reflect insertion or
* removal of only some entries. Similarly, Iterators and
* Enumerations return elements reflecting the state of the hash table
* at some point at or since the creation of the iterator/enumeration.
* They do <em>not</em> throw {@link ConcurrentModificationException}.
* However, iterators are designed to be used by only one thread at a time.
*
* <p> The allowed concurrency among update operations is guided by
* the optional <tt>concurrencyLevel</tt> constructor argument
* (default <tt>16</tt>), which is used as a hint for internal sizing. The
* table is internally partitioned to try to permit the indicated
* number of concurrent updates without contention. Because placement
* in hash tables is essentially random, the actual concurrency will
* vary. Ideally, you should choose a value to accommodate as many
* threads as will ever concurrently modify the table. Using a
* significantly higher value than you need can waste space and time,
* and a significantly lower value can lead to thread contention. But
* overestimates and underestimates within an order of magnitude do
* not usually have much noticeable impact. A value of one is
* appropriate when it is known that only one thread will modify and
* all others will only read. Also, resizing this or any other kind of
* hash table is a relatively slow operation, so, when possible, it is
* a good idea to provide estimates of expected table sizes in
* constructors.
*
* <p>This class and its views and iterators implement all of the
* <em>optional</em> methods of the {@link Map} and {@link Iterator}
* interfaces.
*
* <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
* does <em>not</em> allow <tt>null</tt> to be used as a key or value.
*
* <p>This class is a member of the
* <a href="{@docRoot}/../technotes/guides/collections/index.html">
* Java Collections Framework</a>.
*
* @since 1.5
* @author Doug Lea
* @param <K> the type of keys maintained by this map
* @param <V> the type of mapped values
*/
public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
implements ConcurrentMap<K, V>, Serializable {
private static final long serialVersionUID = 7249069246763182397L; /*
* The basic strategy is to subdivide the table among Segments,
* each of which itself is a concurrently readable hash table. To
* reduce footprint, all but one segments are constructed only
* when first needed (see ensureSegment). To maintain visibility
* in the presence of lazy construction, accesses to segments as
* well as elements of segment's table must use volatile access,
* which is done via Unsafe within methods segmentAt etc
* below. These provide the functionality of AtomicReferenceArrays
* but reduce the levels of indirection. Additionally,
* volatile-writes of table elements and entry "next" fields
* within locked operations use the cheaper "lazySet" forms of
* writes (via putOrderedObject) because these writes are always
* followed by lock releases that maintain sequential consistency
* of table updates.
*
* Historical note: The previous version of this class relied
* heavily on "final" fields, which avoided some volatile reads at
* the expense of a large initial footprint. Some remnants of
* that design (including forced construction of segment 0) exist
* to ensure serialization compatibility.
*/ /* ---------------- Constants -------------- */ /**
* The default initial capacity for this table,
* used when not otherwise specified in a constructor.
*/
static final int DEFAULT_INITIAL_CAPACITY = 16; /**
* The default load factor for this table, used when not
* otherwise specified in a constructor.
*/
static final float DEFAULT_LOAD_FACTOR = 0.75f; /**
* The default concurrency level for this table, used when not
* otherwise specified in a constructor.
*/
static final int DEFAULT_CONCURRENCY_LEVEL = 16; /**
* The maximum capacity, used if a higher value is implicitly
* specified by either of the constructors with arguments. MUST
* be a power of two <= 1<<30 to ensure that entries are indexable
* using ints.
*/
static final int MAXIMUM_CAPACITY = 1 << 30; /**
* The minimum capacity for per-segment tables. Must be a power
* of two, at least two to avoid immediate resizing on next use
* after lazy construction.
*/
static final int MIN_SEGMENT_TABLE_CAPACITY = 2; /**
* The maximum number of segments to allow; used to bound
* constructor arguments. Must be power of two less than 1 << 24.
*/
static final int MAX_SEGMENTS = 1 << 16; // slightly conservative /**
* Number of unsynchronized retries in size and containsValue
* methods before resorting to locking. This is used to avoid
* unbounded retries if tables undergo continuous modification
* which would make it impossible to obtain an accurate result.
*/
static final int RETRIES_BEFORE_LOCK = 2; /* ---------------- Fields -------------- */ /**
* holds values which can't be initialized until after VM is booted.
*/
private static class Holder { /**
* Enable alternative hashing of String keys?
*
* <p>Unlike the other hash map implementations we do not implement a
* threshold for regulating whether alternative hashing is used for
* String keys. Alternative hashing is either enabled for all instances
* or disabled for all instances.
*/
static final boolean ALTERNATIVE_HASHING; static {
// Use the "threshold" system property even though our threshold
// behaviour is "ON" or "OFF".
String altThreshold = java.security.AccessController.doPrivileged(
new sun.security.action.GetPropertyAction(
"jdk.map.althashing.threshold")); int threshold;
try {
threshold = (null != altThreshold)
? Integer.parseInt(altThreshold)
: Integer.MAX_VALUE; // disable alternative hashing if -1
if (threshold == -1) {
threshold = Integer.MAX_VALUE;
} if (threshold < 0) {
throw new IllegalArgumentException("value must be positive integer.");
}
} catch(IllegalArgumentException failed) {
throw new Error("Illegal value for 'jdk.map.althashing.threshold'", failed);
}
ALTERNATIVE_HASHING = threshold <= MAXIMUM_CAPACITY;
}
} /**
* A randomizing value associated with this instance that is applied to
* hash code of keys to make hash collisions harder to find.
*/
private transient final int hashSeed = randomHashSeed(this); private static int randomHashSeed(ConcurrentHashMap instance) {
if (sun.misc.VM.isBooted() && Holder.ALTERNATIVE_HASHING) {
return sun.misc.Hashing.randomHashSeed(instance);
} return 0;
} /**
* Mask value for indexing into segments. The upper bits of a
* key's hash code are used to choose the segment.
*/
final int segmentMask; /**
* Shift value for indexing within segments.
*/
final int segmentShift; /**
* The segments, each of which is a specialized hash table.
*/
final Segment<K,V>[] segments; transient Set<K> keySet;
transient Set<Map.Entry<K,V>> entrySet;
transient Collection<V> values; /**
* ConcurrentHashMap list entry. Note that this is never exported
* out as a user-visible Map.Entry.
*/
static final class HashEntry<K,V> {
final int hash;
final K key;
volatile V value;
volatile HashEntry<K,V> next; HashEntry(int hash, K key, V value, HashEntry<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
} /**
* Sets next field with volatile write semantics. (See above
* about use of putOrderedObject.)
*/
final void setNext(HashEntry<K,V> n) {
UNSAFE.putOrderedObject(this, nextOffset, n);
} // Unsafe mechanics
static final sun.misc.Unsafe UNSAFE;
static final long nextOffset;
static {
try {
UNSAFE = sun.misc.Unsafe.getUnsafe();
Class k = HashEntry.class;
nextOffset = UNSAFE.objectFieldOffset
(k.getDeclaredField("next"));
} catch (Exception e) {
throw new Error(e);
}
}
} /**
* Gets the ith element of given table (if nonnull) with volatile
* read semantics. Note: This is manually integrated into a few
* performance-sensitive methods to reduce call overhead.
*/
@SuppressWarnings("unchecked")
static final <K,V> HashEntry<K,V> entryAt(HashEntry<K,V>[] tab, int i) {
return (tab == null) ? null :
(HashEntry<K,V>) UNSAFE.getObjectVolatile
(tab, ((long)i << TSHIFT) + TBASE);
} /**
* Sets the ith element of given table, with volatile write
* semantics. (See above about use of putOrderedObject.)
*/
static final <K,V> void setEntryAt(HashEntry<K,V>[] tab, int i,
HashEntry<K,V> e) {
UNSAFE.putOrderedObject(tab, ((long)i << TSHIFT) + TBASE, e);
} /**
* Applies a supplemental hash function to a given hashCode, which
* defends against poor quality hash functions. This is critical
* because ConcurrentHashMap uses power-of-two length hash tables,
* that otherwise encounter collisions for hashCodes that do not
* differ in lower or upper bits.
*/
private int hash(Object k) {
int h = hashSeed; if ((0 != h) && (k instanceof String)) {
return sun.misc.Hashing.stringHash32((String) k);
} h ^= k.hashCode(); // Spread bits to regularize both segment and index locations,
// using variant of single-word Wang/Jenkins hash.
h += (h << 15) ^ 0xffffcd7d;
h ^= (h >>> 10);
h += (h << 3);
h ^= (h >>> 6);
h += (h << 2) + (h << 14);
return h ^ (h >>> 16);
} /**
* Segments are specialized versions of hash tables. This
* subclasses from ReentrantLock opportunistically, just to
* simplify some locking and avoid separate construction.
*/
static final class Segment<K,V> extends ReentrantLock implements Serializable {
/*
* Segments maintain a table of entry lists that are always
* kept in a consistent state, so can be read (via volatile
* reads of segments and tables) without locking. This
* requires replicating nodes when necessary during table
* resizing, so the old lists can be traversed by readers
* still using old version of table.
*
* This class defines only mutative methods requiring locking.
* Except as noted, the methods of this class perform the
* per-segment versions of ConcurrentHashMap methods. (Other
* methods are integrated directly into ConcurrentHashMap
* methods.) These mutative methods use a form of controlled
* spinning on contention via methods scanAndLock and
* scanAndLockForPut. These intersperse tryLocks with
* traversals to locate nodes. The main benefit is to absorb
* cache misses (which are very common for hash tables) while
* obtaining locks so that traversal is faster once
* acquired. We do not actually use the found nodes since they
* must be re-acquired under lock anyway to ensure sequential
* consistency of updates (and in any case may be undetectably
* stale), but they will normally be much faster to re-locate.
* Also, scanAndLockForPut speculatively creates a fresh node
* to use in put if no node is found.
*/ private static final long serialVersionUID = 2249069246763182397L; /**
* The maximum number of times to tryLock in a prescan before
* possibly blocking on acquire in preparation for a locked
* segment operation. On multiprocessors, using a bounded
* number of retries maintains cache acquired while locating
* nodes.
*/
static final int MAX_SCAN_RETRIES =
Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1; /**
* The per-segment table. Elements are accessed via
* entryAt/setEntryAt providing volatile semantics.
*/
transient volatile HashEntry<K,V>[] table; /**
* The number of elements. Accessed only either within locks
* or among other volatile reads that maintain visibility.
*/
transient int count; /**
* The total number of mutative operations in this segment.
* Even though this may overflows 32 bits, it provides
* sufficient accuracy for stability checks in CHM isEmpty()
* and size() methods. Accessed only either within locks or
* among other volatile reads that maintain visibility.
*/
transient int modCount; /**
* The table is rehashed when its size exceeds this threshold.
* (The value of this field is always <tt>(int)(capacity *
* loadFactor)</tt>.)
*/
transient int threshold; /**
* The load factor for the hash table. Even though this value
* is same for all segments, it is replicated to avoid needing
* links to outer object.
* @serial
*/
final float loadFactor; Segment(float lf, int threshold, HashEntry<K,V>[] tab) {
this.loadFactor = lf;
this.threshold = threshold;
this.table = tab;
} final V put(K key, int hash, V value, boolean onlyIfAbsent) {
HashEntry<K,V> node = tryLock() ? null :
scanAndLockForPut(key, hash, value);
V oldValue;
try {
HashEntry<K,V>[] tab = table;
int index = (tab.length - 1) & hash;
HashEntry<K,V> first = entryAt(tab, index);
for (HashEntry<K,V> e = first;;) {
if (e != null) {
K k;
if ((k = e.key) == key ||
(e.hash == hash && key.equals(k))) {
oldValue = e.value;
if (!onlyIfAbsent) {
e.value = value;
++modCount;
}
break;
}
e = e.next;
}
else {
if (node != null)
node.setNext(first);
else
node = new HashEntry<K,V>(hash, key, value, first);
int c = count + 1;
if (c > threshold && tab.length < MAXIMUM_CAPACITY)
rehash(node);
else
setEntryAt(tab, index, node);
++modCount;
count = c;
oldValue = null;
break;
}
}
} finally {
unlock();
}
return oldValue;
} /**
* Doubles size of table and repacks entries, also adding the
* given node to new table
*/
@SuppressWarnings("unchecked")
private void rehash(HashEntry<K,V> node) {
/*
* Reclassify nodes in each list to new table. Because we
* are using power-of-two expansion, the elements from
* each bin must either stay at same index, or move with a
* power of two offset. We eliminate unnecessary node
* creation by catching cases where old nodes can be
* reused because their next fields won't change.
* Statistically, at the default threshold, only about
* one-sixth of them need cloning when a table
* doubles. The nodes they replace will be garbage
* collectable as soon as they are no longer referenced by
* any reader thread that may be in the midst of
* concurrently traversing table. Entry accesses use plain
* array indexing because they are followed by volatile
* table write.
*/
HashEntry<K,V>[] oldTable = table;
int oldCapacity = oldTable.length;
int newCapacity = oldCapacity << 1;
threshold = (int)(newCapacity * loadFactor);
HashEntry<K,V>[] newTable =
(HashEntry<K,V>[]) new HashEntry[newCapacity];
int sizeMask = newCapacity - 1;
for (int i = 0; i < oldCapacity ; i++) {
HashEntry<K,V> e = oldTable[i];
if (e != null) {
HashEntry<K,V> next = e.next;
int idx = e.hash & sizeMask;
if (next == null) // Single node on list
newTable[idx] = e;
else { // Reuse consecutive sequence at same slot
HashEntry<K,V> lastRun = e;
int lastIdx = idx;
for (HashEntry<K,V> last = next;
last != null;
last = last.next) {
int k = last.hash & sizeMask;
if (k != lastIdx) {
lastIdx = k;
lastRun = last;
}
}
newTable[lastIdx] = lastRun;
// Clone remaining nodes
for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
V v = p.value;
int h = p.hash;
int k = h & sizeMask;
HashEntry<K,V> n = newTable[k];
newTable[k] = new HashEntry<K,V>(h, p.key, v, n);
}
}
}
}
int nodeIndex = node.hash & sizeMask; // add the new node
node.setNext(newTable[nodeIndex]);
newTable[nodeIndex] = node;
table = newTable;
} /**
* Scans for a node containing given key while trying to
* acquire lock, creating and returning one if not found. Upon
* return, guarantees that lock is held. UNlike in most
* methods, calls to method equals are not screened: Since
* traversal speed doesn't matter, we might as well help warm
* up the associated code and accesses as well.
*
* @return a new node if key not found, else null
*/
private HashEntry<K,V> scanAndLockForPut(K key, int hash, V value) {
HashEntry<K,V> first = entryForHash(this, hash);
HashEntry<K,V> e = first;
HashEntry<K,V> node = null;
int retries = -1; // negative while locating node
while (!tryLock()) {
HashEntry<K,V> f; // to recheck first below
if (retries < 0) {
if (e == null) {
if (node == null) // speculatively create node
node = new HashEntry<K,V>(hash, key, value, null);
retries = 0;
}
else if (key.equals(e.key))
retries = 0;
else
e = e.next;
}
else if (++retries > MAX_SCAN_RETRIES) {
lock();
break;
}
else if ((retries & 1) == 0 &&
(f = entryForHash(this, hash)) != first) {
e = first = f; // re-traverse if entry changed
retries = -1;
}
}
return node;
} /**
* Scans for a node containing the given key while trying to
* acquire lock for a remove or replace operation. Upon
* return, guarantees that lock is held. Note that we must
* lock even if the key is not found, to ensure sequential
* consistency of updates.
*/
private void scanAndLock(Object key, int hash) {
// similar to but simpler than scanAndLockForPut
HashEntry<K,V> first = entryForHash(this, hash);
HashEntry<K,V> e = first;
int retries = -1;
while (!tryLock()) {
HashEntry<K,V> f;
if (retries < 0) {
if (e == null || key.equals(e.key))
retries = 0;
else
e = e.next;
}
else if (++retries > MAX_SCAN_RETRIES) {
lock();
break;
}
else if ((retries & 1) == 0 &&
(f = entryForHash(this, hash)) != first) {
e = first = f;
retries = -1;
}
}
} /**
* Remove; match on key only if value null, else match both.
*/
final V remove(Object key, int hash, Object value) {
if (!tryLock())
scanAndLock(key, hash);
V oldValue = null;
try {
HashEntry<K,V>[] tab = table;
int index = (tab.length - 1) & hash;
HashEntry<K,V> e = entryAt(tab, index);
HashEntry<K,V> pred = null;
while (e != null) {
K k;
HashEntry<K,V> next = e.next;
if ((k = e.key) == key ||
(e.hash == hash && key.equals(k))) {
V v = e.value;
if (value == null || value == v || value.equals(v)) {
if (pred == null)
setEntryAt(tab, index, next);
else
pred.setNext(next);
++modCount;
--count;
oldValue = v;
}
break;
}
pred = e;
e = next;
}
} finally {
unlock();
}
return oldValue;
} final boolean replace(K key, int hash, V oldValue, V newValue) {
if (!tryLock())
scanAndLock(key, hash);
boolean replaced = false;
try {
HashEntry<K,V> e;
for (e = entryForHash(this, hash); e != null; e = e.next) {
K k;
if ((k = e.key) == key ||
(e.hash == hash && key.equals(k))) {
if (oldValue.equals(e.value)) {
e.value = newValue;
++modCount;
replaced = true;
}
break;
}
}
} finally {
unlock();
}
return replaced;
} final V replace(K key, int hash, V value) {
if (!tryLock())
scanAndLock(key, hash);
V oldValue = null;
try {
HashEntry<K,V> e;
for (e = entryForHash(this, hash); e != null; e = e.next) {
K k;
if ((k = e.key) == key ||
(e.hash == hash && key.equals(k))) {
oldValue = e.value;
e.value = value;
++modCount;
break;
}
}
} finally {
unlock();
}
return oldValue;
} final void clear() {
lock();
try {
HashEntry<K,V>[] tab = table;
for (int i = 0; i < tab.length ; i++)
setEntryAt(tab, i, null);
++modCount;
count = 0;
} finally {
unlock();
}
}
} // Accessing segments /**
* Gets the jth element of given segment array (if nonnull) with
* volatile element access semantics via Unsafe. (The null check
* can trigger harmlessly only during deserialization.) Note:
* because each element of segments array is set only once (using
* fully ordered writes), some performance-sensitive methods rely
* on this method only as a recheck upon null reads.
*/
@SuppressWarnings("unchecked")
static final <K,V> Segment<K,V> segmentAt(Segment<K,V>[] ss, int j) {
long u = (j << SSHIFT) + SBASE;
return ss == null ? null :
(Segment<K,V>) UNSAFE.getObjectVolatile(ss, u);
} /**
* Returns the segment for the given index, creating it and
* recording in segment table (via CAS) if not already present.
*
* @param k the index
* @return the segment
*/
@SuppressWarnings("unchecked")
private Segment<K,V> ensureSegment(int k) {
final Segment<K,V>[] ss = this.segments;
long u = (k << SSHIFT) + SBASE; // raw offset
Segment<K,V> seg;
if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) {
Segment<K,V> proto = ss[0]; // use segment 0 as prototype
int cap = proto.table.length;
float lf = proto.loadFactor;
int threshold = (int)(cap * lf);
HashEntry<K,V>[] tab = (HashEntry<K,V>[])new HashEntry[cap];
if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
== null) { // recheck
Segment<K,V> s = new Segment<K,V>(lf, threshold, tab);
while ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
== null) {
if (UNSAFE.compareAndSwapObject(ss, u, null, seg = s))
break;
}
}
}
return seg;
} // Hash-based segment and entry accesses /**
* Get the segment for the given hash
*/
@SuppressWarnings("unchecked")
private Segment<K,V> segmentForHash(int h) {
long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
return (Segment<K,V>) UNSAFE.getObjectVolatile(segments, u);
} /**
* Gets the table entry for the given segment and hash
*/
@SuppressWarnings("unchecked")
static final <K,V> HashEntry<K,V> entryForHash(Segment<K,V> seg, int h) {
HashEntry<K,V>[] tab;
return (seg == null || (tab = seg.table) == null) ? null :
(HashEntry<K,V>) UNSAFE.getObjectVolatile
(tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
} /* ---------------- Public operations -------------- */ /**
* Creates a new, empty map with the specified initial
* capacity, load factor and concurrency level.
*
* @param initialCapacity the initial capacity. The implementation
* performs internal sizing to accommodate this many elements.
* @param loadFactor the load factor threshold, used to control resizing.
* Resizing may be performed when the average number of elements per
* bin exceeds this threshold.
* @param concurrencyLevel the estimated number of concurrently
* updating threads. The implementation performs internal sizing
* to try to accommodate this many threads.
* @throws IllegalArgumentException if the initial capacity is
* negative or the load factor or concurrencyLevel are
* nonpositive.
*/
@SuppressWarnings("unchecked")
public ConcurrentHashMap(int initialCapacity,
float loadFactor, int concurrencyLevel) {
if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
throw new IllegalArgumentException();
if (concurrencyLevel > MAX_SEGMENTS)
concurrencyLevel = MAX_SEGMENTS;
// Find power-of-two sizes best matching arguments
int sshift = 0;
int ssize = 1;
while (ssize < concurrencyLevel) {
++sshift;
ssize <<= 1;
}
this.segmentShift = 32 - sshift;
this.segmentMask = ssize - 1;
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
int c = initialCapacity / ssize;
if (c * ssize < initialCapacity)
++c;
int cap = MIN_SEGMENT_TABLE_CAPACITY;
while (cap < c)
cap <<= 1;
// create segments and segments[0]
Segment<K,V> s0 =
new Segment<K,V>(loadFactor, (int)(cap * loadFactor),
(HashEntry<K,V>[])new HashEntry[cap]);
Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];
UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]
this.segments = ss;
} /**
* Creates a new, empty map with the specified initial capacity
* and load factor and with the default concurrencyLevel (16).
*
* @param initialCapacity The implementation performs internal
* sizing to accommodate this many elements.
* @param loadFactor the load factor threshold, used to control resizing.
* Resizing may be performed when the average number of elements per
* bin exceeds this threshold.
* @throws IllegalArgumentException if the initial capacity of
* elements is negative or the load factor is nonpositive
*
* @since 1.6
*/
public ConcurrentHashMap(int initialCapacity, float loadFactor) {
this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL);
} /**
* Creates a new, empty map with the specified initial capacity,
* and with default load factor (0.75) and concurrencyLevel (16).
*
* @param initialCapacity the initial capacity. The implementation
* performs internal sizing to accommodate this many elements.
* @throws IllegalArgumentException if the initial capacity of
* elements is negative.
*/
public ConcurrentHashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
} /**
* Creates a new, empty map with a default initial capacity (16),
* load factor (0.75) and concurrencyLevel (16).
*/
public ConcurrentHashMap() {
this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
} /**
* Creates a new map with the same mappings as the given map.
* The map is created with a capacity of 1.5 times the number
* of mappings in the given map or 16 (whichever is greater),
* and a default load factor (0.75) and concurrencyLevel (16).
*
* @param m the map
*/
public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
DEFAULT_INITIAL_CAPACITY),
DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
putAll(m);
} /**
* Returns <tt>true</tt> if this map contains no key-value mappings.
*
* @return <tt>true</tt> if this map contains no key-value mappings
*/
public boolean isEmpty() {
/*
* Sum per-segment modCounts to avoid mis-reporting when
* elements are concurrently added and removed in one segment
* while checking another, in which case the table was never
* actually empty at any point. (The sum ensures accuracy up
* through at least 1<<31 per-segment modifications before
* recheck.) Methods size() and containsValue() use similar
* constructions for stability checks.
*/
long sum = 0L;
final Segment<K,V>[] segments = this.segments;
for (int j = 0; j < segments.length; ++j) {
Segment<K,V> seg = segmentAt(segments, j);
if (seg != null) {
if (seg.count != 0)
return false;
sum += seg.modCount;
}
}
if (sum != 0L) { // recheck unless no modifications
for (int j = 0; j < segments.length; ++j) {
Segment<K,V> seg = segmentAt(segments, j);
if (seg != null) {
if (seg.count != 0)
return false;
sum -= seg.modCount;
}
}
if (sum != 0L)
return false;
}
return true;
} /**
* Returns the number of key-value mappings in this map. If the
* map contains more than <tt>Integer.MAX_VALUE</tt> elements, returns
* <tt>Integer.MAX_VALUE</tt>.
*
* @return the number of key-value mappings in this map
*/
public int size() {
// Try a few times to get accurate count. On failure due to
// continuous async changes in table, resort to locking.
final Segment<K,V>[] segments = this.segments;
int size;
boolean overflow; // true if size overflows 32 bits
long sum; // sum of modCounts
long last = 0L; // previous sum
int retries = -1; // first iteration isn't retry
try {
for (;;) {
if (retries++ == RETRIES_BEFORE_LOCK) {
for (int j = 0; j < segments.length; ++j)
ensureSegment(j).lock(); // force creation
}
sum = 0L;
size = 0;
overflow = false;
for (int j = 0; j < segments.length; ++j) {
Segment<K,V> seg = segmentAt(segments, j);
if (seg != null) {
sum += seg.modCount;
int c = seg.count;
if (c < 0 || (size += c) < 0)
overflow = true;
}
}
if (sum == last)
break;
last = sum;
}
} finally {
if (retries > RETRIES_BEFORE_LOCK) {
for (int j = 0; j < segments.length; ++j)
segmentAt(segments, j).unlock();
}
}
return overflow ? Integer.MAX_VALUE : size;
} /**
* Returns the value to which the specified key is mapped,
* or {@code null} if this map contains no mapping for the key.
*
* <p>More formally, if this map contains a mapping from a key
* {@code k} to a value {@code v} such that {@code key.equals(k)},
* then this method returns {@code v}; otherwise it returns
* {@code null}. (There can be at most one such mapping.)
*
* @throws NullPointerException if the specified key is null
*/
public V get(Object key) {
Segment<K,V> s; // manually integrate access methods to reduce overhead
HashEntry<K,V>[] tab;
int h = hash(key);
long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
(tab = s.table) != null) {
for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
(tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
e != null; e = e.next) {
K k;
if ((k = e.key) == key || (e.hash == h && key.equals(k)))
return e.value;
}
}
return null;
} /**
* Tests if the specified object is a key in this table.
*
* @param key possible key
* @return <tt>true</tt> if and only if the specified object
* is a key in this table, as determined by the
* <tt>equals</tt> method; <tt>false</tt> otherwise.
* @throws NullPointerException if the specified key is null
*/
@SuppressWarnings("unchecked")
public boolean containsKey(Object key) {
Segment<K,V> s; // same as get() except no need for volatile value read
HashEntry<K,V>[] tab;
int h = hash(key);
long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
(tab = s.table) != null) {
for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
(tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
e != null; e = e.next) {
K k;
if ((k = e.key) == key || (e.hash == h && key.equals(k)))
return true;
}
}
return false;
} /**
* Returns <tt>true</tt> if this map maps one or more keys to the
* specified value. Note: This method requires a full internal
* traversal of the hash table, and so is much slower than
* method <tt>containsKey</tt>.
*
* @param value value whose presence in this map is to be tested
* @return <tt>true</tt> if this map maps one or more keys to the
* specified value
* @throws NullPointerException if the specified value is null
*/
public boolean containsValue(Object value) {
// Same idea as size()
if (value == null)
throw new NullPointerException();
final Segment<K,V>[] segments = this.segments;
boolean found = false;
long last = 0;
int retries = -1;
try {
outer: for (;;) {
if (retries++ == RETRIES_BEFORE_LOCK) {
for (int j = 0; j < segments.length; ++j)
ensureSegment(j).lock(); // force creation
}
long hashSum = 0L;
int sum = 0;
for (int j = 0; j < segments.length; ++j) {
HashEntry<K,V>[] tab;
Segment<K,V> seg = segmentAt(segments, j);
if (seg != null && (tab = seg.table) != null) {
for (int i = 0 ; i < tab.length; i++) {
HashEntry<K,V> e;
for (e = entryAt(tab, i); e != null; e = e.next) {
V v = e.value;
if (v != null && value.equals(v)) {
found = true;
break outer;
}
}
}
sum += seg.modCount;
}
}
if (retries > 0 && sum == last)
break;
last = sum;
}
} finally {
if (retries > RETRIES_BEFORE_LOCK) {
for (int j = 0; j < segments.length; ++j)
segmentAt(segments, j).unlock();
}
}
return found;
} /**
* Legacy method testing if some key maps into the specified value
* in this table. This method is identical in functionality to
* {@link #containsValue}, and exists solely to ensure
* full compatibility with class {@link java.util.Hashtable},
* which supported this method prior to introduction of the
* Java Collections framework. * @param value a value to search for
* @return <tt>true</tt> if and only if some key maps to the
* <tt>value</tt> argument in this table as
* determined by the <tt>equals</tt> method;
* <tt>false</tt> otherwise
* @throws NullPointerException if the specified value is null
*/
public boolean contains(Object value) {
return containsValue(value);
} /**
* Maps the specified key to the specified value in this table.
* Neither the key nor the value can be null.
*
* <p> The value can be retrieved by calling the <tt>get</tt> method
* with a key that is equal to the original key.
*
* @param key key with which the specified value is to be associated
* @param value value to be associated with the specified key
* @return the previous value associated with <tt>key</tt>, or
* <tt>null</tt> if there was no mapping for <tt>key</tt>
* @throws NullPointerException if the specified key or value is null
*/
@SuppressWarnings("unchecked")
public V put(K key, V value) {
Segment<K,V> s;
if (value == null)
throw new NullPointerException();
int hash = hash(key);
int j = (hash >>> segmentShift) & segmentMask;
if ((s = (Segment<K,V>)UNSAFE.getObject // nonvolatile; recheck
(segments, (j << SSHIFT) + SBASE)) == null) // in ensureSegment
s = ensureSegment(j);
return s.put(key, hash, value, false);
} /**
* {@inheritDoc}
*
* @return the previous value associated with the specified key,
* or <tt>null</tt> if there was no mapping for the key
* @throws NullPointerException if the specified key or value is null
*/
@SuppressWarnings("unchecked")
public V putIfAbsent(K key, V value) {
Segment<K,V> s;
if (value == null)
throw new NullPointerException();
int hash = hash(key);
int j = (hash >>> segmentShift) & segmentMask;
if ((s = (Segment<K,V>)UNSAFE.getObject
(segments, (j << SSHIFT) + SBASE)) == null)
s = ensureSegment(j);
return s.put(key, hash, value, true);
} /**
* Copies all of the mappings from the specified map to this one.
* These mappings replace any mappings that this map had for any of the
* keys currently in the specified map.
*
* @param m mappings to be stored in this map
*/
public void putAll(Map<? extends K, ? extends V> m) {
for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
put(e.getKey(), e.getValue());
} /**
* Removes the key (and its corresponding value) from this map.
* This method does nothing if the key is not in the map.
*
* @param key the key that needs to be removed
* @return the previous value associated with <tt>key</tt>, or
* <tt>null</tt> if there was no mapping for <tt>key</tt>
* @throws NullPointerException if the specified key is null
*/
public V remove(Object key) {
int hash = hash(key);
Segment<K,V> s = segmentForHash(hash);
return s == null ? null : s.remove(key, hash, null);
} /**
* {@inheritDoc}
*
* @throws NullPointerException if the specified key is null
*/
public boolean remove(Object key, Object value) {
int hash = hash(key);
Segment<K,V> s;
return value != null && (s = segmentForHash(hash)) != null &&
s.remove(key, hash, value) != null;
} /**
* {@inheritDoc}
*
* @throws NullPointerException if any of the arguments are null
*/
public boolean replace(K key, V oldValue, V newValue) {
int hash = hash(key);
if (oldValue == null || newValue == null)
throw new NullPointerException();
Segment<K,V> s = segmentForHash(hash);
return s != null && s.replace(key, hash, oldValue, newValue);
} /**
* {@inheritDoc}
*
* @return the previous value associated with the specified key,
* or <tt>null</tt> if there was no mapping for the key
* @throws NullPointerException if the specified key or value is null
*/
public V replace(K key, V value) {
int hash = hash(key);
if (value == null)
throw new NullPointerException();
Segment<K,V> s = segmentForHash(hash);
return s == null ? null : s.replace(key, hash, value);
} /**
* Removes all of the mappings from this map.
*/
public void clear() {
final Segment<K,V>[] segments = this.segments;
for (int j = 0; j < segments.length; ++j) {
Segment<K,V> s = segmentAt(segments, j);
if (s != null)
s.clear();
}
} /**
* Returns a {@link Set} view of the keys contained in this map.
* The set is backed by the map, so changes to the map are
* reflected in the set, and vice-versa. The set supports element
* removal, which removes the corresponding mapping from this map,
* via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
* <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
* operations. It does not support the <tt>add</tt> or
* <tt>addAll</tt> operations.
*
* <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
* that will never throw {@link ConcurrentModificationException},
* and guarantees to traverse elements as they existed upon
* construction of the iterator, and may (but is not guaranteed to)
* reflect any modifications subsequent to construction.
*/
public Set<K> keySet() {
Set<K> ks = keySet;
return (ks != null) ? ks : (keySet = new KeySet());
} /**
* Returns a {@link Collection} view of the values contained in this map.
* The collection is backed by the map, so changes to the map are
* reflected in the collection, and vice-versa. The collection
* supports element removal, which removes the corresponding
* mapping from this map, via the <tt>Iterator.remove</tt>,
* <tt>Collection.remove</tt>, <tt>removeAll</tt>,
* <tt>retainAll</tt>, and <tt>clear</tt> operations. It does not
* support the <tt>add</tt> or <tt>addAll</tt> operations.
*
* <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
* that will never throw {@link ConcurrentModificationException},
* and guarantees to traverse elements as they existed upon
* construction of the iterator, and may (but is not guaranteed to)
* reflect any modifications subsequent to construction.
*/
public Collection<V> values() {
Collection<V> vs = values;
return (vs != null) ? vs : (values = new Values());
} /**
* Returns a {@link Set} view of the mappings contained in this map.
* The set is backed by the map, so changes to the map are
* reflected in the set, and vice-versa. The set supports element
* removal, which removes the corresponding mapping from the map,
* via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
* <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
* operations. It does not support the <tt>add</tt> or
* <tt>addAll</tt> operations.
*
* <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
* that will never throw {@link ConcurrentModificationException},
* and guarantees to traverse elements as they existed upon
* construction of the iterator, and may (but is not guaranteed to)
* reflect any modifications subsequent to construction.
*/
public Set<Map.Entry<K,V>> entrySet() {
Set<Map.Entry<K,V>> es = entrySet;
return (es != null) ? es : (entrySet = new EntrySet());
} /**
* Returns an enumeration of the keys in this table.
*
* @return an enumeration of the keys in this table
* @see #keySet()
*/
public Enumeration<K> keys() {
return new KeyIterator();
} /**
* Returns an enumeration of the values in this table.
*
* @return an enumeration of the values in this table
* @see #values()
*/
public Enumeration<V> elements() {
return new ValueIterator();
} /* ---------------- Iterator Support -------------- */ abstract class HashIterator {
int nextSegmentIndex;
int nextTableIndex;
HashEntry<K,V>[] currentTable;
HashEntry<K, V> nextEntry;
HashEntry<K, V> lastReturned; HashIterator() {
nextSegmentIndex = segments.length - 1;
nextTableIndex = -1;
advance();
} /**
* Set nextEntry to first node of next non-empty table
* (in backwards order, to simplify checks).
*/
final void advance() {
for (;;) {
if (nextTableIndex >= 0) {
if ((nextEntry = entryAt(currentTable,
nextTableIndex--)) != null)
break;
}
else if (nextSegmentIndex >= 0) {
Segment<K,V> seg = segmentAt(segments, nextSegmentIndex--);
if (seg != null && (currentTable = seg.table) != null)
nextTableIndex = currentTable.length - 1;
}
else
break;
}
} final HashEntry<K,V> nextEntry() {
HashEntry<K,V> e = nextEntry;
if (e == null)
throw new NoSuchElementException();
lastReturned = e; // cannot assign until after null check
if ((nextEntry = e.next) == null)
advance();
return e;
} public final boolean hasNext() { return nextEntry != null; }
public final boolean hasMoreElements() { return nextEntry != null; } public final void remove() {
if (lastReturned == null)
throw new IllegalStateException();
ConcurrentHashMap.this.remove(lastReturned.key);
lastReturned = null;
}
} final class KeyIterator
extends HashIterator
implements Iterator<K>, Enumeration<K>
{
public final K next() { return super.nextEntry().key; }
public final K nextElement() { return super.nextEntry().key; }
} final class ValueIterator
extends HashIterator
implements Iterator<V>, Enumeration<V>
{
public final V next() { return super.nextEntry().value; }
public final V nextElement() { return super.nextEntry().value; }
} /**
* Custom Entry class used by EntryIterator.next(), that relays
* setValue changes to the underlying map.
*/
final class WriteThroughEntry
extends AbstractMap.SimpleEntry<K,V>
{
WriteThroughEntry(K k, V v) {
super(k,v);
} /**
* Set our entry's value and write through to the map. The
* value to return is somewhat arbitrary here. Since a
* WriteThroughEntry does not necessarily track asynchronous
* changes, the most recent "previous" value could be
* different from what we return (or could even have been
* removed in which case the put will re-establish). We do not
* and cannot guarantee more.
*/
public V setValue(V value) {
if (value == null) throw new NullPointerException();
V v = super.setValue(value);
ConcurrentHashMap.this.put(getKey(), value);
return v;
}
} final class EntryIterator
extends HashIterator
implements Iterator<Entry<K,V>>
{
public Map.Entry<K,V> next() {
HashEntry<K,V> e = super.nextEntry();
return new WriteThroughEntry(e.key, e.value);
}
} final class KeySet extends AbstractSet<K> {
public Iterator<K> iterator() {
return new KeyIterator();
}
public int size() {
return ConcurrentHashMap.this.size();
}
public boolean isEmpty() {
return ConcurrentHashMap.this.isEmpty();
}
public boolean contains(Object o) {
return ConcurrentHashMap.this.containsKey(o);
}
public boolean remove(Object o) {
return ConcurrentHashMap.this.remove(o) != null;
}
public void clear() {
ConcurrentHashMap.this.clear();
}
} final class Values extends AbstractCollection<V> {
public Iterator<V> iterator() {
return new ValueIterator();
}
public int size() {
return ConcurrentHashMap.this.size();
}
public boolean isEmpty() {
return ConcurrentHashMap.this.isEmpty();
}
public boolean contains(Object o) {
return ConcurrentHashMap.this.containsValue(o);
}
public void clear() {
ConcurrentHashMap.this.clear();
}
} final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
public Iterator<Map.Entry<K,V>> iterator() {
return new EntryIterator();
}
public boolean contains(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry<?,?> e = (Map.Entry<?,?>)o;
V v = ConcurrentHashMap.this.get(e.getKey());
return v != null && v.equals(e.getValue());
}
public boolean remove(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry<?,?> e = (Map.Entry<?,?>)o;
return ConcurrentHashMap.this.remove(e.getKey(), e.getValue());
}
public int size() {
return ConcurrentHashMap.this.size();
}
public boolean isEmpty() {
return ConcurrentHashMap.this.isEmpty();
}
public void clear() {
ConcurrentHashMap.this.clear();
}
} /* ---------------- Serialization Support -------------- */ /**
* Save the state of the <tt>ConcurrentHashMap</tt> instance to a
* stream (i.e., serialize it).
* @param s the stream
* @serialData
* the key (Object) and value (Object)
* for each key-value mapping, followed by a null pair.
* The key-value mappings are emitted in no particular order.
*/
private void writeObject(java.io.ObjectOutputStream s) throws IOException {
// force all segments for serialization compatibility
for (int k = 0; k < segments.length; ++k)
ensureSegment(k);
s.defaultWriteObject(); final Segment<K,V>[] segments = this.segments;
for (int k = 0; k < segments.length; ++k) {
Segment<K,V> seg = segmentAt(segments, k);
seg.lock();
try {
HashEntry<K,V>[] tab = seg.table;
for (int i = 0; i < tab.length; ++i) {
HashEntry<K,V> e;
for (e = entryAt(tab, i); e != null; e = e.next) {
s.writeObject(e.key);
s.writeObject(e.value);
}
}
} finally {
seg.unlock();
}
}
s.writeObject(null);
s.writeObject(null);
} /**
* Reconstitute the <tt>ConcurrentHashMap</tt> instance from a
* stream (i.e., deserialize it).
* @param s the stream
*/
@SuppressWarnings("unchecked")
private void readObject(java.io.ObjectInputStream s)
throws IOException, ClassNotFoundException {
// Don't call defaultReadObject()
ObjectInputStream.GetField oisFields = s.readFields();
final Segment<K,V>[] oisSegments = (Segment<K,V>[])oisFields.get("segments", null); final int ssize = oisSegments.length;
if (ssize < 1 || ssize > MAX_SEGMENTS
|| (ssize & (ssize-1)) != 0 ) // ssize not power of two
throw new java.io.InvalidObjectException("Bad number of segments:"
+ ssize);
int sshift = 0, ssizeTmp = ssize;
while (ssizeTmp > 1) {
++sshift;
ssizeTmp >>>= 1;
}
UNSAFE.putIntVolatile(this, SEGSHIFT_OFFSET, 32 - sshift);
UNSAFE.putIntVolatile(this, SEGMASK_OFFSET, ssize - 1);
UNSAFE.putObjectVolatile(this, SEGMENTS_OFFSET, oisSegments); // set hashMask
UNSAFE.putIntVolatile(this, HASHSEED_OFFSET, randomHashSeed(this)); // Re-initialize segments to be minimally sized, and let grow.
int cap = MIN_SEGMENT_TABLE_CAPACITY;
final Segment<K,V>[] segments = this.segments;
for (int k = 0; k < segments.length; ++k) {
Segment<K,V> seg = segments[k];
if (seg != null) {
seg.threshold = (int)(cap * seg.loadFactor);
seg.table = (HashEntry<K,V>[]) new HashEntry[cap];
}
} // Read the keys and values, and put the mappings in the table
for (;;) {
K key = (K) s.readObject();
V value = (V) s.readObject();
if (key == null)
break;
put(key, value);
}
} // Unsafe mechanics
private static final sun.misc.Unsafe UNSAFE;
private static final long SBASE;
private static final int SSHIFT;
private static final long TBASE;
private static final int TSHIFT;
private static final long HASHSEED_OFFSET;
private static final long SEGSHIFT_OFFSET;
private static final long SEGMASK_OFFSET;
private static final long SEGMENTS_OFFSET; static {
int ss, ts;
try {
UNSAFE = sun.misc.Unsafe.getUnsafe();
Class tc = HashEntry[].class;
Class sc = Segment[].class;
TBASE = UNSAFE.arrayBaseOffset(tc);
SBASE = UNSAFE.arrayBaseOffset(sc);
ts = UNSAFE.arrayIndexScale(tc);
ss = UNSAFE.arrayIndexScale(sc);
HASHSEED_OFFSET = UNSAFE.objectFieldOffset(
ConcurrentHashMap.class.getDeclaredField("hashSeed"));
SEGSHIFT_OFFSET = UNSAFE.objectFieldOffset(
ConcurrentHashMap.class.getDeclaredField("segmentShift"));
SEGMASK_OFFSET = UNSAFE.objectFieldOffset(
ConcurrentHashMap.class.getDeclaredField("segmentMask"));
SEGMENTS_OFFSET = UNSAFE.objectFieldOffset(
ConcurrentHashMap.class.getDeclaredField("segments"));
} catch (Exception e) {
throw new Error(e);
}
if ((ss & (ss-1)) != 0 || (ts & (ts-1)) != 0)
throw new Error("data type scale not a power of two");
SSHIFT = 31 - Integer.numberOfLeadingZeros(ss);
TSHIFT = 31 - Integer.numberOfLeadingZeros(ts);
} }

下面从ConcurrentHashMap的创建,获取,添加,删除这4个方面对ConcurrentHashMap进行分析。

1 创建

下面以ConcurrentHashMap(int initialCapacity,float loadFactor, int concurrencyLevel)来进行说明。

@SuppressWarnings("unchecked")
public ConcurrentHashMap(int initialCapacity,
float loadFactor, int concurrencyLevel) {
// 参数有效性判断
if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
throw new IllegalArgumentException();
// concurrencyLevel是“用来计算segments的容量”
if (concurrencyLevel > MAX_SEGMENTS)
concurrencyLevel = MAX_SEGMENTS;
int sshift = 0;
int ssize = 1;
// ssize=“大于或等于concurrencyLevel的最小的2的N次方值”
while (ssize < concurrencyLevel) {
++sshift;
ssize <<= 1;
}
// 初始化segmentShift和segmentMask
this.segmentShift = 32 - sshift;
this.segmentMask = ssize - 1;
// 哈希表的初始容量
// 哈希表的实际容量=“segments的容量” x “segments中数组的长度”
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
// “哈希表的初始容量” / “segments的容量”
int c = initialCapacity / ssize;
if (c * ssize < initialCapacity)
++c;
// cap就是“segments中的HashEntry数组的长度”
int cap = MIN_SEGMENT_TABLE_CAPACITY;
while (cap < c)
cap <<= 1;
// segments
Segment<K,V> s0 =
new Segment<K,V>(loadFactor, (int)(cap * loadFactor),
(HashEntry<K,V>[])new HashEntry[cap]);
Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];
UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]
this.segments = ss;
}

说明
(01) 前面我们说过,ConcurrentHashMap采用了“锁分段”技术;在代码中,它通过“segments数组”对象来保存各个分段。segments的定义如下:

final Segment<K,V>[] segments;

concurrencyLevel的作用就是用来计算segments数组的容量大小。先计算出“大于或等于concurrencyLevel的最小的2的N次方值”,然后将其保存为“segments的容量大小(ssize)”。
(02) initialCapacity是哈希表的初始容量。需要注意的是,哈希表的实际容量=“segments的容量” x “segments中数组的长度”。
(03) loadFactor是加载因子。它是哈希表在其容量自动增加之前可以达到多满的一种尺度。

ConcurrentHashMap的构造函数中涉及到的非常重要的一个结构体,它就是Segment。下面看看Segment的声明:

static final class Segment<K,V> extends ReentrantLock implements Serializable {
... transient volatile HashEntry<K,V>[] table;
// threshold阈,是哈希表在其容量自动增加之前可以达到多满的一种尺度。
transient int threshold;
// loadFactor是加载因子
final float loadFactor; Segment(float lf, int threshold, HashEntry<K,V>[] tab) {
this.loadFactor = lf;
this.threshold = threshold;
this.table = tab;
} ...
}

说明:Segment包含HashEntry数组,HashEntry保存了哈希表中的键值对。
此外,还需要说明的Segment继承于ReentrantLock。这意味着,Segment本质上就是可重入的互斥锁。

HashEntry的源码如下:

static final class HashEntry<K,V> {
final int hash; // 哈希值
final K key; // 键
volatile V value; // 值
volatile HashEntry<K,V> next; // 下一个HashEntry节点 HashEntry(int hash, K key, V value, HashEntry<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
} ...
}

说明:和HashMap的节点一样,HashEntry也是链表。这就说明,ConcurrentHashMap是链式哈希表,它是通过“拉链法”来解决哈希冲突的。

2 获取

下面以get(Object key)为例,对ConcurrentHashMap的获取方法进行说明。

public V get(Object key) {
Segment<K,V> s; // manually integrate access methods to reduce overhead
HashEntry<K,V>[] tab;
int h = hash(key);
long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
// 获取key对应的Segment片段。
// 如果Segment片段不为null,则在“Segment片段的HashEntry数组中”中找到key所对应的HashEntry列表;
// 接着遍历该HashEntry链表,找到于key-value键值对对应的HashEntry节点。
if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
(tab = s.table) != null) {
for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
(tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
e != null; e = e.next) {
K k;
if ((k = e.key) == key || (e.hash == h && key.equals(k)))
return e.value;
}
}
return null;
}

说明:get(Object key)的作用是返回key在ConcurrentHashMap哈希表中对应的值。
它首先根据key计算出来的哈希值,获取key所对应的Segment片段。
如果Segment片段不为null,则在“Segment片段的HashEntry数组中”中找到key所对应的HashEntry列表。Segment包含“HashEntry数组”对象,而每一个HashEntry本质上是一个单向链表。
接着遍历该HashEntry链表,找到于key-value键值对对应的HashEntry节点。

下面是hash()的源码

private int hash(Object k) {
int h = hashSeed; if ((0 != h) && (k instanceof String)) {
return sun.misc.Hashing.stringHash32((String) k);
} h ^= k.hashCode(); // Spread bits to regularize both segment and index locations,
// using variant of single-word Wang/Jenkins hash.
h += (h << 15) ^ 0xffffcd7d;
h ^= (h >>> 10);
h += (h << 3);
h ^= (h >>> 6);
h += (h << 2) + (h << 14);
return h ^ (h >>> 16);
}

3 增加

下面以put(K key, V value)来对ConcurrentHashMap中增加键值对来进行说明。

public V put(K key, V value) {
Segment<K,V> s;
if (value == null)
throw new NullPointerException();
// 获取key对应的哈希值
int hash = hash(key);
int j = (hash >>> segmentShift) & segmentMask;
// 如果找不到该Segment,则新建一个。
if ((s = (Segment<K,V>)UNSAFE.getObject // nonvolatile; recheck
(segments, (j << SSHIFT) + SBASE)) == null) // in ensureSegment
s = ensureSegment(j);
return s.put(key, hash, value, false);
}

说明
(01) put()根据key获取对应的哈希值,再根据哈希值找到对应的Segment片段。如果Segment片段不存在,则新增一个Segment。
(02) 将key-value键值对添加到Segment片段中。

final V put(K key, int hash, V value, boolean onlyIfAbsent) {
// tryLock()获取锁,成功返回true,失败返回false。
// 获取锁失败的话,则通过scanAndLockForPut()获取锁,并返回”要插入的key-value“对应的”HashEntry链表“。
HashEntry<K,V> node = tryLock() ? null :
scanAndLockForPut(key, hash, value);
V oldValue;
try {
// tab代表”当前Segment中的HashEntry数组“
HashEntry<K,V>[] tab = table;
// 根据”hash值“获取”HashEntry数组中对应的HashEntry链表“
int index = (tab.length - 1) & hash;
HashEntry<K,V> first = entryAt(tab, index);
for (HashEntry<K,V> e = first;;) {
// 如果”HashEntry链表中的当前HashEntry节点“不为null,
if (e != null) {
K k;
// 当”要插入的key-value键值对“已经存在于”HashEntry链表中“时,先保存原有的值。
// 若”onlyIfAbsent“为true,即”要插入的key不存在时才插入”,则直接退出;
// 否则,用新的value值覆盖原有的原有的值。
if ((k = e.key) == key ||
(e.hash == hash && key.equals(k))) {
oldValue = e.value;
if (!onlyIfAbsent) {
e.value = value;
++modCount;
}
break;
}
e = e.next;
}
else {
// 如果node非空,则将first设置为“node的下一个节点”。
// 否则,新建HashEntry链表
if (node != null)
node.setNext(first);
else
node = new HashEntry<K,V>(hash, key, value, first);
int c = count + 1;
// 如果添加key-value键值对之后,Segment中的元素超过阈值(并且,HashEntry数组的长度没超过限制),则rehash;
// 否则,直接添加key-value键值对。
if (c > threshold && tab.length < MAXIMUM_CAPACITY)
rehash(node);
else
setEntryAt(tab, index, node);
++modCount;
count = c;
oldValue = null;
break;
}
}
} finally {
// 释放锁
unlock();
}
return oldValue;
}

说明
put()的作用是将key-value键值对插入到“当前Segment对应的HashEntry中”,在插入前它会获取Segment对应的互斥锁,插入后会释放锁。具体的插入过程如下:
(01) 首先根据“hash值”获取“当前Segment的HashEntry数组对象”中的“HashEntry节点”,每个HashEntry节点都是一个单向链表。
(02) 接着,遍历HashEntry链表。
       若在遍历HashEntry链表时,找到与“要key-value键值对”对应的节点,即“要插入的key-value键值对”的key已经存在于HashEntry链表中。则根据onlyIfAbsent进行判断,若onlyIfAbsent为true,即“当要插入的key不存在时才插入”,则不进行插入,直接返回;否则,用新的value值覆盖原始的value值,然后再返回。
       若在遍历HashEntry链表时,没有找到与“要key-value键值对”对应的节点。当node!=null时,即在scanAndLockForPut()获取锁时,已经新建了key-value对应的HashEntry节点,则”将HashEntry添加到Segment中“;否则,新建key-value对应的HashEntry节点,然后再“将HashEntry添加到Segment中”。 在”将HashEntry添加到Segment中“前,会判断是否需要rehash。如果在添加key-value键值之后,容量会超过阈值,并且HashEntry数组的长度没有超过限制,则进行rehash;否则,直接通过setEntryAt()将key-value键值对添加到Segment中。

在介绍rehash()和setEntryAt()之前,我们先看看自旋函数scanAndLockForPut()。下面是它的源码:

private HashEntry<K,V> scanAndLockForPut(K key, int hash, V value) {
// 第一个HashEntry节点
HashEntry<K,V> first = entryForHash(this, hash);
// 当前的HashEntry节点
HashEntry<K,V> e = first;
HashEntry<K,V> node = null;
// 重复计数(自旋计数器)
int retries = -1; // negative while locating node // 查找”key-value键值对“在”HashEntry链表上对应的节点“;
// 若找到的话,则不断的自旋;在自旋期间,若通过tryLock()获取锁成功则返回;否则自旋MAX_SCAN_RETRIES次数之后,强制获取”锁“并退出。
// 若没有找到的话,则新建一个HashEntry链表。然后不断的自旋。
// 此外,若在自旋期间,HashEntry链表的表头发生变化;则重新进行查找和自旋工作!
while (!tryLock()) {
HashEntry<K,V> f; // to recheck first below
// 1. retries<0的处理情况
if (retries < 0) {
// 1.1 如果当前的HashEntry节点为空(意味着,在该HashEntry链表上上没有找到”要插入的键值对“对应的节点),而且node=null;则新建HashEntry链表。
if (e == null) {
if (node == null) // speculatively create node
node = new HashEntry<K,V>(hash, key, value, null);
retries = 0;
}
// 1.2 如果当前的HashEntry节点是”要插入的键值对在该HashEntry上对应的节点“,则设置retries=0
else if (key.equals(e.key))
retries = 0;
// 1.3 设置为下一个HashEntry。
else
e = e.next;
}
// 2. 如果自旋次数超过限制,则获取“锁”并退出
else if (++retries > MAX_SCAN_RETRIES) {
lock();
break;
}
// 3. 当“尝试了偶数次”时,就获取“当前Segment的第一个HashEntry”,即f。
// 然后,通过f!=first来判断“当前Segment的第一个HashEntry是否发生了改变”。
// 若是的话,则重置e,first和retries的值,并重新遍历。
else if ((retries & 1) == 0 &&
(f = entryForHash(this, hash)) != first) {
e = first = f; // re-traverse if entry changed
retries = -1;
}
}
return node;
}

说明
scanAndLockForPut()的目标是获取锁。流程如下:
    它首先会调用entryForHash(),根据hash值获取”当前Segment中对应的HashEntry节点(first),即找到对应的HashEntry链表“。
    紧接着进入while循环。在while循环中,它会遍历”HashEntry链表(e)“,查找”要插入的key-value键值对“在”该HashEntry链表上对应的节点“。
         若找到的话,则不断的自旋,即不断的执行while循环。在自旋期间,若通过tryLock()获取锁成功则返回;否则,在自旋MAX_SCAN_RETRIES次数之后,强制获取锁并退出。
         若没有找到的话,则新建一个HashEntry链表,然后不断的自旋。在自旋期间,若通过tryLock()获取锁成功则返回;否则,在自旋MAX_SCAN_RETRIES次数之后,强制获取锁并退出。
     此外,若在自旋期间,HashEntry链表的表头发生变化;则重新进行查找和自旋工作!

理解scanAndLockForPut()时,务必要联系”哈希表“的数据结构。一个Segment本身就是一个哈希表,Segment中包含了”HashEntry数组“对象,而每一个HashEntry对象本身是一个”单向链表“。

下面看看rehash()的实现代码。

private void rehash(HashEntry<K,V> node) {
HashEntry<K,V>[] oldTable = table;
// ”Segment中原始的HashEntry数组的长度“
int oldCapacity = oldTable.length;
// ”Segment中新HashEntry数组的长度“
int newCapacity = oldCapacity << 1;
// 新的阈值
threshold = (int)(newCapacity * loadFactor);
// 新的HashEntry数组
HashEntry<K,V>[] newTable =
(HashEntry<K,V>[]) new HashEntry[newCapacity];
int sizeMask = newCapacity - 1;
// 遍历”原始的HashEntry数组“,
// 将”原始的HashEntry数组“中的每个”HashEntry链表“的值,都复制到”新的HashEntry数组的HashEntry元素“中。
for (int i = 0; i < oldCapacity ; i++) {
// 获取”原始的HashEntry数组“中的”第i个HashEntry链表“
HashEntry<K,V> e = oldTable[i];
if (e != null) {
HashEntry<K,V> next = e.next;
int idx = e.hash & sizeMask;
if (next == null) // Single node on list
newTable[idx] = e;
else { // Reuse consecutive sequence at same slot
HashEntry<K,V> lastRun = e;
int lastIdx = idx;
for (HashEntry<K,V> last = next;
last != null;
last = last.next) {
int k = last.hash & sizeMask;
if (k != lastIdx) {
lastIdx = k;
lastRun = last;
}
}
newTable[lastIdx] = lastRun;
// 将”原始的HashEntry数组“中的”HashEntry链表(e)“的值,都复制到”新的HashEntry数组的HashEntry“中。
for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
V v = p.value;
int h = p.hash;
int k = h & sizeMask;
HashEntry<K,V> n = newTable[k];
newTable[k] = new HashEntry<K,V>(h, p.key, v, n);
}
}
}
}
// 将新的node节点添加到“Segment的新HashEntry数组(newTable)“中。
int nodeIndex = node.hash & sizeMask; // add the new node
node.setNext(newTable[nodeIndex]);
newTable[nodeIndex] = node;
table = newTable;
}

说明:rehash()的作用是将”Segment的容量“变为”原始的Segment容量的2倍“。
在将原始的数据拷贝到“新的Segment”中后,会将新增加的key-value键值对添加到“新的Segment”中。

setEntryAt()的源码如下:

static final <K,V> void setEntryAt(HashEntry<K,V>[] tab, int i,
HashEntry<K,V> e) {
UNSAFE.putOrderedObject(tab, ((long)i << TSHIFT) + TBASE, e);
}

UNSAFE是Segment类中定义的“静态sun.misc.Unsafe”对象。源码如下:

static final sun.misc.Unsafe UNSAFE;

Unsafe.java在openjdk6中的路径是:openjdk6/jdk/src/share/classes/sun/misc/Unsafe.java。其中,putOrderedObject()的源码下:

public native void putOrderedObject(Object o, long offset, Object x);

说明:putOrderedObject()是一个本地方法。
它会设置obj对象中offset偏移地址对应的object型field的值为指定值。它是一个有序或者有延迟的putObjectVolatile()方法,并且不保证值的改变被其他线程立即看到。只有在field被volatile修饰并且期望被意外修改的时候,使用putOrderedObject()才有用。

总之,setEntryAt()的目的是设置tab中第i位置元素的值为e,且该设置会有延迟。

4 删除

下面以remove(Object key)来对ConcurrentHashMap中的删除操作来进行说明。

public V remove(Object key) {
int hash = hash(key);
// 根据hash值,找到key对应的Segment片段。
Segment<K,V> s = segmentForHash(hash);
return s == null ? null : s.remove(key, hash, null);
}

说明:remove()首先根据“key的计算出来的哈希值”找到对应的Segment片段,然后再从该Segment片段中删除对应的“key-value键值对”。

remove()的方法如下:

final V remove(Object key, int hash, Object value) {
// 尝试获取Segment对应的锁。
// 尝试失败的话,则通过scanAndLock()来获取锁。
if (!tryLock())
scanAndLock(key, hash);
V oldValue = null;
try {
// 根据“hash值”找到“Segment的HashEntry数组”中对应的“HashEntry节点(e)”,该HashEntry节点是一HashEntry个链表。
HashEntry<K,V>[] tab = table;
int index = (tab.length - 1) & hash;
HashEntry<K,V> e = entryAt(tab, index);
HashEntry<K,V> pred = null;
// 遍历“HashEntry链表”,删除key-value键值对
while (e != null) {
K k;
HashEntry<K,V> next = e.next;
if ((k = e.key) == key ||
(e.hash == hash && key.equals(k))) {
V v = e.value;
if (value == null || value == v || value.equals(v)) {
if (pred == null)
setEntryAt(tab, index, next);
else
pred.setNext(next);
++modCount;
--count;
oldValue = v;
}
break;
}
pred = e;
e = next;
}
} finally {
// 释放锁
unlock();
}
return oldValue;
}

说明:remove()的目的就是删除key-value键值对。在删除之前,它会获取到Segment的互斥锁,在删除之后,再释放锁。
它的删除过程也比较简单,它会先根据hash值,找到“Segment的HashEntry数组”中对应的“HashEntry”节点。根据Segment的数据结构,我们知道Segment中包含一个HashEntry数组对象,而每一个HashEntry本质上是一个单向链表。 在找到“HashEntry”节点之后,就遍历该“HashEntry”节点对应的链表,找到key-value键值对对应的节点,然后删除。

下面对scanAndLock()进行说明。它的源码如下:

private void scanAndLock(Object key, int hash) {
// 第一个HashEntry节点
HashEntry<K,V> first = entryForHash(this, hash);
HashEntry<K,V> e = first;
int retries = -1; // 查找”key-value键值对“在”HashEntry链表上对应的节点“;
// 无论找没找到,最后都会不断的自旋;在自旋期间,若通过tryLock()获取锁成功则返回;否则自旋MAX_SCAN_RETRIES次数之后,强制获取”锁“并退出。
// 若在自旋期间,HashEntry链表的表头发生变化;则重新进行查找和自旋!
while (!tryLock()) {
HashEntry<K,V> f;
if (retries < 0) {
// 如果“遍历完该HashEntry链表,仍然没找到”要删除的键值对“对应的节点”
// 或者“在该HashEntry链表上找到”要删除的键值对“对应的节点”,则设置retries=0
// 否则,设置e为下一个HashEntry节点。
if (e == null || key.equals(e.key))
retries = 0;
else
e = e.next;
}
// 自旋超过限制次数之后,获取锁并退出。
else if (++retries > MAX_SCAN_RETRIES) {
lock();
break;
}
// 当“尝试了偶数次”时,就获取“当前Segment的第一个HashEntry”,即f。
// 然后,通过f!=first来判断“当前Segment的第一个HashEntry是否发生了改变”。
// 若是的话,则重置e,first和retries的值,并重新遍历。
else if ((retries & 1) == 0 &&
(f = entryForHash(this, hash)) != first) {
e = first = f;
retries = -1;
}
}
}

说明:scanAndLock()的目标是获取锁。它的实现与scanAndLockForPut()类似,这里就不再过多说明。

总结:ConcurrentHashMap是线程安全的哈希表,它是通过“锁分段”来实现的。ConcurrentHashMap中包括了“Segment(锁分段)数组”,每个Segment就是一个哈希表,而且也是可重入的互斥锁。第一,Segment是哈希表表现在,Segment包含了“HashEntry数组”,而“HashEntry数组”中的每一个HashEntry元素是一个单向链表。即Segment是通过链式哈希表。第二,Segment是可重入的互斥锁表现在,Segment继承于ReentrantLock,而ReentrantLock就是可重入的互斥锁。
对于ConcurrentHashMap的添加,删除操作,在操作开始前,线程都会获取Segment的互斥锁;操作完毕之后,才会释放。而对于读取操作,它是通过volatile去实现的,HashEntry数组是volatile类型的,而volatile能保证“即对一个volatile变量的读,总是能看到(任意线程)对这个volatile变量最后的写入”,即我们总能读到其它线程写入HashEntry之后的值。 以上这些方式,就是ConcurrentHashMap线程安全的实现原理。

ConcurrentHashMap示例

下面,我们通过一个例子去对比HashMap和ConcurrentHashMap。

 import java.util.*;
import java.util.concurrent.*; /*
* ConcurrentHashMap是“线程安全”的哈希表,而HashMap是非线程安全的。
*
* 下面是“多个线程同时操作并且遍历map”的示例
* (01) 当map是ConcurrentHashMap对象时,程序能正常运行。
* (02) 当map是HashMap对象时,程序会产生ConcurrentModificationException异常。
*
* @author skywang
*/
public class ConcurrentHashMapDemo1 { // TODO: map是HashMap对象时,程序会出错。
//private static Map<String, String> map = new HashMap<String, String>();
private static Map<String, String> map = new ConcurrentHashMap<String, String>();
public static void main(String[] args) { // 同时启动两个线程对map进行操作!
new MyThread("ta").start();
new MyThread("tb").start();
} private static void printAll() {
String key, value;
Iterator iter = map.entrySet().iterator();
while(iter.hasNext()) {
Map.Entry entry = (Map.Entry)iter.next();
key = (String)entry.getKey();
value = (String)entry.getValue();
System.out.print(key+" - "+value+", ");
}
System.out.println();
} private static class MyThread extends Thread {
MyThread(String name) {
super(name);
}
@Override
public void run() {
int i = 0;
while (i++ < 6) {
// “线程名” + "-" + "序号"
String val = Thread.currentThread().getName()+i;
map.put(String.valueOf(i), val);
// 通过“Iterator”遍历map。
printAll();
}
}
}
}

(某一次)运行结果

1 - tb1,
1 - tb1,
1 - tb1, 1 - tb1, 2 - tb2,
2 - tb2, 1 - tb1,
3 - ta3, 1 - tb1, 2 - tb2,
3 - tb3, 1 - tb1, 2 - tb2,
3 - tb3, 1 - tb1, 4 - tb4, 3 - tb3, 2 - tb2,
4 - tb4, 1 - tb1, 2 - tb2,
5 - ta5, 1 - tb1, 3 - tb3, 5 - tb5, 4 - tb4, 3 - tb3, 2 - tb2,
4 - tb4, 1 - tb1, 2 - tb2,
5 - tb5, 1 - tb1, 6 - tb6, 5 - tb5, 3 - tb3, 6 - tb6, 4 - tb4, 3 - tb3, 2 - tb2,
4 - tb4, 2 - tb2,

结果说明:如果将源码中的map改成HashMap对象时,程序会产生ConcurrentModificationException异常。


更多内容

1. Java多线程系列--“JUC集合”01之 框架

2. Java多线程系列--“JUC集合”02之 CopyOnWriteArrayList

3. Java多线程系列--“JUC集合”03之 CopyOnWriteArraySet

4. Java多线程系列目录(共xx篇)

Java多线程系列--“JUC集合”04之 ConcurrentHashMap的更多相关文章

  1. Java多线程系列--“JUC集合”02之 CopyOnWriteArrayList

    概要 本章是"JUC系列"的CopyOnWriteArrayList篇.接下来,会先对CopyOnWriteArrayList进行基本介绍,然后再说明它的原理,接着通过代码去分析, ...

  2. Java多线程系列--“JUC集合”07之 ArrayBlockingQueue

    概要 本章对Java.util.concurrent包中的ArrayBlockingQueue类进行详细的介绍.内容包括:ArrayBlockingQueue介绍ArrayBlockingQueue原 ...

  3. Java多线程系列--“JUC集合”08之 LinkedBlockingQueue

    概要 本章介绍JUC包中的LinkedBlockingQueue.内容包括:LinkedBlockingQueue介绍LinkedBlockingQueue原理和数据结构LinkedBlockingQ ...

  4. Java多线程系列--“JUC集合”09之 LinkedBlockingDeque

    概要 本章介绍JUC包中的LinkedBlockingDeque.内容包括:LinkedBlockingDeque介绍LinkedBlockingDeque原理和数据结构LinkedBlockingD ...

  5. Java多线程系列--“JUC集合”10之 ConcurrentLinkedQueue

    概要 本章对Java.util.concurrent包中的ConcurrentHashMap类进行详细的介绍.内容包括:ConcurrentLinkedQueue介绍ConcurrentLinkedQ ...

  6. Java多线程系列--“JUC集合”03之 CopyOnWriteArraySet

    概要 本章是JUC系列中的CopyOnWriteArraySet篇.接下来,会先对CopyOnWriteArraySet进行基本介绍,然后再说明它的原理,接着通过代码去分析,最后通过示例更进一步的了解 ...

  7. Java多线程系列--“JUC集合”05之 ConcurrentSkipListMap

    概要 本章对Java.util.concurrent包中的ConcurrentSkipListMap类进行详细的介绍.内容包括:ConcurrentSkipListMap介绍ConcurrentSki ...

  8. Java多线程系列--“JUC集合”06之 ConcurrentSkipListSet

    概要 本章对Java.util.concurrent包中的ConcurrentSkipListSet类进行详细的介绍.内容包括:ConcurrentSkipListSet介绍ConcurrentSki ...

  9. Java多线程系列--“JUC锁”04之 公平锁(二)

    概要 前面一章,我们学习了“公平锁”获取锁的详细流程:这里,我们再来看看“公平锁”释放锁的过程.内容包括:参考代码释放公平锁(基于JDK1.7.0_40) “公平锁”的获取过程请参考“Java多线程系 ...

随机推荐

  1. 带回调函数的js运动框架

    function startMove(obj, json, endFun) { //开始前关闭之前obj上的定时器 clearInterval(obj.timer); //定时器 obj.timer ...

  2. C++学习心得

    从大一的学习中,我了解到C++是兼容C的面向过程和面向对象的程序设计语言.其中,面向对象程序设计方法是以对象为模板的结构化程序设计方法,是对结构化程序设计方法的继承和发展.刚开始的学习让我觉得特别吃力 ...

  3. 《利用Python进行数据分析》第123章学习笔记

    引言 1 列表推导式 records = [json.loads(line) for line in open(path)] 这是一种在一组字符串(或一组别的对象)上执行一条相同操作(如json.lo ...

  4. MediaWiki安装与配置(Ubuntu 10.4)

    实验室准备发布一个网站,本来是准备外包给别人做的,后来自己调研了一下,发现也没有想象的复杂和困难,于是最近一周自己吭哧吭哧地把网站搭好了. 之所以使用Mediawiki,一是考虑到是以实验室发布,不想 ...

  5. 解剖SQLSERVER 第十五篇 SQLSERVER存储过程的源文本存放在哪里?(译)

    解剖SQLSERVER 第十五篇  SQLSERVER存储过程的源文本存放在哪里?(译) http://improve.dk/where-does-sql-server-store-the-sourc ...

  6. Attic 0.8.1 发布,备份程序

    Attic 0.8.1 修复了昨天刚发布的 Attic 0.8 的一个段错误. Attic 是一个可以保证文件不重复的备份程序.Attic 的主要目标是提供一个高效和安全的方法来备份数据.重复数据删除 ...

  7. Rubinius 2.0 发布,Ruby 虚拟机

    Rubinius 2.0 发布了,官方发行说明请看这里. Rubinius是一个运行Ruby程序的虚拟机,其带有Ruby的核心库. Rubinius的设计决定了其调试功能的强大,使得在运行时常规的Ru ...

  8. ASP.NET 4.5.256 has not been registered on the Web server. You need to manually configure your Web server for ASP.NET 4.5.256 in order for your site to run correctly

    Microsoft .NET Framework 4.6安装后,用户可能会在使用Microsoft Visual Studio 创建(或打开现有项目时)网站.或Windows Azure项目时遇到下面 ...

  9. 算法:Astar寻路算法改进

    早前写了一篇<RCP:gef智能寻路算法(A star)> 出现了一点问题. 在AStar算法中,默认寻路起点和终点都是N x N的方格,但如果用在路由上,就会出现问题. 如果,需要连线的 ...

  10. 设计模式之美:Type Object(类型对象)

    索引 意图 结构 参与者 适用性 效果 相关模式 实现 实现方式(一):Type Object 的经典介绍. 实现方式(二):Type Object 在游戏设计中的使用. 意图 允许在运行时动态灵活的 ...