本章介绍迪杰斯特拉算法。和以往一样,本文会先对迪杰斯特拉算法的理论论知识进行介绍,然后给出C语言的实现。后续再分别给出C++和Java版本的实现。

目录
1. 迪杰斯特拉算法介绍
2. 迪杰斯特拉算法图解
3. 迪杰斯特拉算法的代码说明
4. 迪杰斯特拉算法的源码

转载请注明出处:http://www.cnblogs.com/skywang12345/

更多内容:数据结构与算法系列 目录

迪杰斯特拉算法介绍

迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径。
它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止。

基本思想

通过Dijkstra计算图G中的最短路径时,需要指定起点s(即从顶点s开始计算)。

此外,引进两个集合S和U。S的作用是记录已求出最短路径的顶点(以及相应的最短路径长度),而U则是记录还未求出最短路径的顶点(以及该顶点到起点s的距离)。

初始时,S中只有起点s;U中是除s之外的顶点,并且U中顶点的路径是"起点s到该顶点的路径"。然后,从U中找出路径最短的顶点,并将其加入到S中;接着,更新U中的顶点和顶点对应的路径。 然后,再从U中找出路径最短的顶点,并将其加入到S中;接着,更新U中的顶点和顶点对应的路径。 ... 重复该操作,直到遍历完所有顶点。

操作步骤

(1) 初始时,S只包含起点s;U包含除s外的其他顶点,且U中顶点的距离为"起点s到该顶点的距离"[例如,U中顶点v的距离为(s,v)的长度,然后s和v不相邻,则v的距离为∞]。

(2) 从U中选出"距离最短的顶点k",并将顶点k加入到S中;同时,从U中移除顶点k。

(3) 更新U中各个顶点到起点s的距离。之所以更新U中顶点的距离,是由于上一步中确定了k是求出最短路径的顶点,从而可以利用k来更新其它顶点的距离;例如,(s,v)的距离可能大于(s,k)+(k,v)的距离。

(4) 重复步骤(2)和(3),直到遍历完所有顶点。

单纯的看上面的理论可能比较难以理解,下面通过实例来对该算法进行说明。

迪杰斯特拉算法图解

以上图G4为例,来对迪杰斯特拉进行算法演示(以第4个顶点D为起点)。

初始状态:S是已计算出最短路径的顶点集合,U是未计算除最短路径的顶点的集合!
第1步:将顶点D加入到S中。
    此时,S={D(0)}, U={A(∞),B(∞),C(3),E(4),F(∞),G(∞)}。
    注:C(3)表示C到起点D的距离是3。

第2步:将顶点C加入到S中。
    上一步操作之后,U中顶点C到起点D的距离最短;因此,将C加入到S中,同时更新U中顶点的距离。以顶点F为例,之前F到D的距离为∞;但是将C加入到S之后,F到D的距离为9=(F,C)+(C,D)。
    此时,S={D(0),C(3)}, U={A(∞),B(23),E(4),F(9),G(∞)}。

第3步:将顶点E加入到S中。
    上一步操作之后,U中顶点E到起点D的距离最短;因此,将E加入到S中,同时更新U中顶点的距离。还是以顶点F为例,之前F到D的距离为9;但是将E加入到S之后,F到D的距离为6=(F,E)+(E,D)。
    此时,S={D(0),C(3),E(4)}, U={A(∞),B(23),F(6),G(12)}。

第4步:将顶点F加入到S中。
    此时,S={D(0),C(3),E(4),F(6)}, U={A(22),B(13),G(12)}。

第5步:将顶点G加入到S中。
    此时,S={D(0),C(3),E(4),F(6),G(12)}, U={A(22),B(13)}。

第6步:将顶点B加入到S中。
    此时,S={D(0),C(3),E(4),F(6),G(12),B(13)}, U={A(22)}。

第7步:将顶点A加入到S中。
    此时,S={D(0),C(3),E(4),F(6),G(12),B(13),A(22)}。

此时,起点D到各个顶点的最短距离就计算出来了:A(22) B(13) C(3) D(0) E(4) F(6) G(12)

迪杰斯特拉算法的代码说明

以"邻接矩阵"为例对迪杰斯特拉算法进行说明,对于"邻接表"实现的图在后面会给出相应的源码。

1. 基本定义

// 邻接矩阵
typedef struct _graph
{
char vexs[MAX]; // 顶点集合
int vexnum; // 顶点数
int edgnum; // 边数
int matrix[MAX][MAX]; // 邻接矩阵
}Graph, *PGraph; // 边的结构体
typedef struct _EdgeData
{
char start; // 边的起点
char end; // 边的终点
int weight; // 边的权重
}EData;

Graph是邻接矩阵对应的结构体。
vexs用于保存顶点,vexnum是顶点数,edgnum是边数;matrix则是用于保存矩阵信息的二维数组。例如,matrix[i][j]=1,则表示"顶点i(即vexs[i])"和"顶点j(即vexs[j])"是邻接点;matrix[i][j]=0,则表示它们不是邻接点。
EData是邻接矩阵边对应的结构体。

2. 迪杰斯特拉算法

/*
* Dijkstra最短路径。
* 即,统计图(G)中"顶点vs"到其它各个顶点的最短路径。
*
* 参数说明:
* G -- 图
* vs -- 起始顶点(start vertex)。即计算"顶点vs"到其它顶点的最短路径。
* prev -- 前驱顶点数组。即,prev[i]的值是"顶点vs"到"顶点i"的最短路径所经历的全部顶点中,位于"顶点i"之前的那个顶点。
* dist -- 长度数组。即,dist[i]是"顶点vs"到"顶点i"的最短路径的长度。
*/
void dijkstra(Graph G, int vs, int prev[], int dist[])
{
int i,j,k;
int min;
int tmp;
int flag[MAX]; // flag[i]=1表示"顶点vs"到"顶点i"的最短路径已成功获取。 // 初始化
for (i = 0; i < G.vexnum; i++)
{
flag[i] = 0; // 顶点i的最短路径还没获取到。
prev[i] = 0; // 顶点i的前驱顶点为0。
dist[i] = G.matrix[vs][i];// 顶点i的最短路径为"顶点vs"到"顶点i"的权。
} // 对"顶点vs"自身进行初始化
flag[vs] = 1;
dist[vs] = 0; // 遍历G.vexnum-1次;每次找出一个顶点的最短路径。
for (i = 1; i < G.vexnum; i++)
{
// 寻找当前最小的路径;
// 即,在未获取最短路径的顶点中,找到离vs最近的顶点(k)。
min = INF;
for (j = 0; j < G.vexnum; j++)
{
if (flag[j]==0 && dist[j]<min)
{
min = dist[j];
k = j;
}
}
// 标记"顶点k"为已经获取到最短路径
flag[k] = 1; // 修正当前最短路径和前驱顶点
// 即,当已经"顶点k的最短路径"之后,更新"未获取最短路径的顶点的最短路径和前驱顶点"。
for (j = 0; j < G.vexnum; j++)
{
tmp = (G.matrix[k][j]==INF ? INF : (min + G.matrix[k][j])); // 防止溢出
if (flag[j] == 0 && (tmp < dist[j]) )
{
dist[j] = tmp;
prev[j] = k;
}
}
} // 打印dijkstra最短路径的结果
printf("dijkstra(%c): \n", G.vexs[vs]);
for (i = 0; i < G.vexnum; i++)
printf(" shortest(%c, %c)=%d\n", G.vexs[vs], G.vexs[i], dist[i]);
}

迪杰斯特拉算法的源码

这里分别给出"邻接矩阵图"和"邻接表图"的迪杰斯特拉算法源码。

1. 邻接矩阵源码(matrix_udg.c)

2. 邻接表源码(list_udg.c)

Dijkstra算法(一)之 C语言详解的更多相关文章

  1. Floyd算法(一)之 C语言详解

    本章介绍弗洛伊德算法.和以往一样,本文会先对弗洛伊德算法的理论论知识进行介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现. 目录 1. 弗洛伊德算法介绍 2. 弗洛伊德算法图解 3 ...

  2. Prim算法(一)之 C语言详解

    本章介绍普里姆算法.和以往一样,本文会先对普里姆算法的理论论知识进行介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现. 目录 1. 普里姆算法介绍 2. 普里姆算法图解 3. 普里 ...

  3. Kruskal算法(一)之 C语言详解

    本章介绍克鲁斯卡尔算法.和以往一样,本文会先对克鲁斯卡尔算法的理论论知识进行介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现. 目录 1. 最小生成树 2. 克鲁斯卡尔算法介绍 3 ...

  4. 原来Github上的README.md文件这么有意思——Markdown语言详解(sublime text2 版本)

    一直想学习 Markdown 语言,想起以前读的一篇 赵凯强 的 博客 <原来Github上的README.md文件这么有意思——Markdown语言详解>,该篇博主 使用的是Mac系统, ...

  5. Java Web----EL(表达式语言)详解

     Java Web中的EL(表达式语言)详解 表达式语言(Expression Language)简称EL,它是JSP2.0中引入的一个新内容.通过EL可以简化在JSP开发中对对象的引用,从而规范页面 ...

  6. 二分算法题目训练(二)——Exams详解

    CodeForces732D——Exams 详解 Exam 题目描述(google翻译) Vasiliy的考试期限将持续n天.他必须通过m门科目的考试.受试者编号为1至m. 大约每天我们都知道当天可以 ...

  7. 最短路径——dijkstra算法代码(c语言)

    最短路径问题 看了王道的视频,感觉云里雾里的,所以写这个博客来加深理解.(希望能在12点以前写完) 一.总体思想 dijkstra算法的主要思想就是基于贪心,找出从v开始的顶点到各个点的最短路径,做法 ...

  8. Kruskal算法 - C语言详解

    最小生成树 在含有n个顶点的连通图中选择n-1条边,构成一棵极小连通子图,并使该连通子图中n-1条边上权值之和达到最小,则称其为连通网的最小生成树.  例如,对于如上图G4所示的连通网可以有多棵权值总 ...

  9. 拓扑排序(一)之 C语言详解

    本章介绍图的拓扑排序.和以往一样,本文会先对拓扑排序的理论知识进行介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现. 目录 1. 拓扑排序介绍 2. 拓扑排序的算法图解 3. 拓扑 ...

随机推荐

  1. java学习笔记六——数组

    数组类型 数组是一种常见的数据结构,可用于存放多个数据,每一个数组元素存放一个数据,通常可以通过下标进行访问其元素. Java数组要求所有数组元素具有相同的数据类型.因此,数组元素的数据类型是唯一的. ...

  2. 经典排序算法(PHP)

    1.冒泡算法,排序算法,由于在排序过程中总是小数往前放,大数往后放,相当于气泡往上升,所以称作冒泡排序 function maopao_fun($array){ $count = count($arr ...

  3. 播放一个视频并用滚动条控制进度-OpenCV应用学习笔记二

    今天我们来做个有趣的程序实现:利用OpenCV读取本地文件夹的视频文件,并且在窗口中创建拖动控制条来显示并且控制视频文件的读取进度. 此程序调试花费了笔者近一天时间,其实大体程序都已经很快写出,结果执 ...

  4. Mac OS 中 安装配置软件

    1. (2014.1.22) 配置Apache + PHP + MySQL: http://dancewithnet.com/2010/05/09/run-apache-php-mysql-in-ma ...

  5. 在 Vagrant 下启用 SMB 文件共享

    在使用 vagrant 搭建 php 开发环境的时候,需要用到文件同步同步功能.在比对了众多网络文件系统之后,发现对 Windows 下文件同步系统最友好的是 smb, 那么怎么在 vagrant 启 ...

  6. 安装EPEL源

    安装EPEL源 官方源直接安装 rpm -Uvh http://dl.fedoraproject.org/pub/epel/7/x86_64/e/epel-release-7-5.noarch.rpm ...

  7. 如何判断ScrollView滑动方形

    1/判断滚动视图左右滚动 { CGFloat startContentOffsetX;//滚动开始的坐标 CGFloat willEndContentOffsetX; //滚动即将停止的坐标 CGFl ...

  8. java 网络(socket)

    本文梳理一个基础的java TCP消息通信,构造一个简单的Packet进行传输,代码如下: Packet public class Packet { private String attribute; ...

  9. 深入理解MVVM模式中Silverlight的Trigger、Action和Behavior及Silverlight的继承机制

    接触Silverlight已经有两三个月了,开始一直感觉他和Winform很相似,拖拖控件就行了,所以一直把经历放在了研究后台和服务器交互和性能优化上面,很少去仔细研究Silverlight的页面.前 ...

  10. Ehcache BigMemory: 摆脱GC困扰

    问题 使用java开源项目经常需要调优jvm,以优化gc.对于gc,如果对象都是短时对象,那么jvm相对容易优化,假如碰上像solr使用自带java cache的项目,那么gc严重受限于cache,因 ...