A group of two or more people wants to meet and minimize the total travel distance. You are given a 2D grid of values 0 or 1, where each 1 marks the home of someone in the group. The distance is calculated using Manhattan Distance, where distance(p1, p2) = |p2.x - p1.x| + |p2.y - p1.y|.

Example:

Input: 

1 - 0 - 0 - 0 - 1
| | | | |
0 - 0 - 0 - 0 - 0
| | | | |
0 - 0 - 1 - 0 - 0 Output: 6 Explanation: Given three people living at (0,0), (0,4), and (2,2):
  The point (0,2) is an ideal meeting point, as the total travel distance
  of 2+2+2=6 is minimal. So return 6.

Hint:

  1. Try to solve it in one dimension first. How can this solution apply to the two dimension case?

这道题让我们求最佳的开会地点,该地点需要到每个为1的点的曼哈顿距离之和最小,题目中给了提示,让从一维的情况来分析,先看一维时有两个点A和B的情况,

______A_____P_______B_______

可以发现,只要开会为位置P在 [A, B] 区间内,不管在哪,距离之和都是A和B之间的距离,如果P不在 [A, B] 之间,那么距离之和就会大于A和B之间的距离,现在再加两个点C和D:

______C_____A_____P_______B______D______

通过分析可以得出,P点的最佳位置就是在 [A, B] 区间内,这样和四个点的距离之和为AB距离加上 CD 距离,在其他任意一点的距离都会大于这个距离,那么分析出来了上述规律,这题就变得很容易了,只要给位置排好序,然后用最后一个坐标减去第一个坐标,即 CD 距离,倒数第二个坐标减去第二个坐标,即 AB 距离,以此类推,直到最中间停止,那么一维的情况分析出来了,二维的情况就是两个一维相加即可,参见代码如下:

解法一:

class Solution {
public:
int minTotalDistance(vector<vector<int>>& grid) {
vector<int> rows, cols;
for (int i = ; i < grid.size(); ++i) {
for (int j = ; j < grid[i].size(); ++j) {
if (grid[i][j] == ) {
rows.push_back(i);
cols.push_back(j);
}
}
}
return minTotalDistance(rows) + minTotalDistance(cols);
}
int minTotalDistance(vector<int> v) {
int res = ;
sort(v.begin(), v.end());
int i = , j = v.size() - ;
while (i < j) res += v[j--] - v[i++];
return res;
}
};

我们也可以不用多写一个函数,直接对 rows 和 cols 同时处理,稍稍能简化些代码:

解法二:

class Solution {
public:
int minTotalDistance(vector<vector<int>>& grid) {
vector<int> rows, cols;
for (int i = ; i < grid.size(); ++i) {
for (int j = ; j < grid[i].size(); ++j) {
if (grid[i][j] == ) {
rows.push_back(i);
cols.push_back(j);
}
}
}
sort(cols.begin(), cols.end());
int res = , i = , j = rows.size() - ;
while (i < j) res += rows[j] - rows[i] + cols[j--] - cols[i++];
return res;
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/296

类似题目:

Minimum Moves to Equal Array Elements II

Shortest Distance from All Buildings

参考资料:

https://leetcode.com/problems/best-meeting-point/

https://leetcode.com/problems/best-meeting-point/discuss/74186/14ms-java-solution

https://leetcode.com/problems/best-meeting-point/discuss/74244/Simple-Java-code-without-sorting.

https://leetcode.com/problems/best-meeting-point/discuss/74193/Java-2msPython-40ms-two-pointers-solution-no-median-no-sort-with-explanation

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Best Meeting Point 最佳开会地点的更多相关文章

  1. [LeetCode] 296. Best Meeting Point 最佳开会地点

    A group of two or more people wants to meet and minimize the total travel distance. You are given a ...

  2. [Swift]LeetCode296. 最佳开会地点 $ Best Meeting Point

    A group of two or more people wants to meet and minimize the total travel distance. You are given a ...

  3. [LeetCode] 253. Meeting Rooms II 会议室 II

    Given an array of meeting time intervals consisting of start and end times [[s1,e1],[s2,e2],...] (si ...

  4. LeetCode 252. Meeting Rooms (会议室)$

    Given an array of meeting time intervals consisting of start and end times [[s1,e1],[s2,e2],...] (si ...

  5. [LeetCode] 253. Meeting Rooms II 会议室之二

    Given an array of meeting time intervals consisting of start and end times [[s1,e1],[s2,e2],...] (si ...

  6. [LeetCode] 252. Meeting Rooms 会议室

    Given an array of meeting time intervals consisting of start and end times [[s1,e1],[s2,e2],...] (si ...

  7. [LeetCode] Best Meeting Point

    Problem Description: A group of two or more people wants to meet and minimize the total travel dista ...

  8. [LeetCode#253] Meeting Rooms II

    Problem: Given an array of meeting time intervals consisting of start and end times [[s1,e1],[s2,e2] ...

  9. [LeetCode#252] Meeting Rooms

    Problem: Given an array of meeting time intervals consisting of start and end times [[s1,e1],[s2,e2] ...

随机推荐

  1. Node基础篇(文件操作)

    文件操作 相关模块 Node内核提供了很多与文件操作相关的模块,每个模块都提供了一些最基本的操作API,在NPM中也有社区提供的功能包 fs: 基础的文件操作 API path: 提供和路径相关的操作 ...

  2. ThreadLocal<T>的是否有设计问题

    一.吐槽 ThreadLocal<T>明显是.NET从JAVA中来的一个概念,但是这种设计是否出现了问题. 很明显,在JAVA中threadLocal直接是Thread的成员,当然随着th ...

  3. VR/AR 非技术总结

    VR/AR 非技术总结 **欢迎转载~转载请注明Erma的博客 http://www.cnblogs.com/Erma-king/** 都说2016是VR/AR的元年,上半年我随着新技术的潮流进入了V ...

  4. js正则表达式校验非正整数:^((-\d+)|(0+))$

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  5. FunDA(2)- Streaming Data Operation:流式数据操作

    在上一集的讨论里我们介绍并实现了强类型返回结果行.使用强类型主要的目的是当我们把后端数据库SQL批次操作搬到内存里转变成数据流式按行操作时能更方便.准确.高效地选定数据字段.在上集讨论示范里我们用集合 ...

  6. .Net 搭建 RESTful

    1.新建项目 ---> 选择 web 应用程序 选择 webApi 2. 创建一个httpmodeule类 放到app_data文件夹下 public class MyHttpModule : ...

  7. 利用CSS背景颜色属性使父级div背景透明同时避免子级标签透明。

    实现背景色透明效果的代码 实现各个浏览器中具备良好的透明特性的效果,IE中使用私有滤镜filter,高端浏览器使用CSS3中的rgba属性. 输入十六进制的颜色值以及透明度,自动在IE的过渡滤镜以及C ...

  8. 由于目标计算机积极拒绝,无法连接。 192.168.1.106:8078 说明: 执行当前 Web 请求期间,出现未经处理的异常。

    请检查堆栈跟踪信息,以了解有关该错误以及代码中导致错误的出处的详细信息. 异常详细信息: System.Net.Sockets.SocketException: 由于目标计算机积极拒绝,无法连接. 1 ...

  9. 自定义PopupWindow

    PopupWindow,一个弹出窗口控件,可以用来显示任意View,而且会浮动在当前activity的顶部 自定义PopupWindow. 1.extends PopupWindow 2.构造方法中可 ...

  10. 【代码笔记】iOS-页面调的时候隐藏工具条

    代码: - (void)viewDidLoad { [super viewDidLoad]; // Do any additional setup after loading the view. se ...