Java集合:TreeMap源码剖析
一、概念
TreeMap是基于红黑树结构实现的一种Map,要分析TreeMap的实现首先就要对红黑树有所了解。
1.二叉查询树、红黑树介绍、
1.数组,优点:(1)随机访问效率高(根据下标查询),(2)搜索效率较高(可使用折半方法)。缺点:(1)内存连续且固定,存储效率低。(2)插入和删除效率低(可能会进行数组拷贝或扩容)。
2.链表,优点:(1)不要求连续内存,内存利用率高,(2)插入和删除效率高(只需要改变指针指向)。缺点:(1)不支持随机访问,(2)搜索效率低(需要遍历)。
3.Hash表:优点:(1)搜索效率高,(2)插入和删除效率较高,缺点:(1)内存利用率低(基于数组),(2)存在散列冲突。
public class BinaryTree { // 二叉树的根节点
public TreeNode rootNode ;
// 记录搜索深度
public int count; /**
* 利用传入一个数组来建立二叉树
*/
public BinaryTree(int[] data) {
for (int i = 0; i < data. length; i++) {
addNodeToTree(data[i]);
}
} /**
* 将指定的值加入到二叉树中适当的节点
*/
private void addNodeToTree(int value) {
TreeNode currentNode = rootNode;
// 建立树根
if (rootNode == null) {
rootNode = new TreeNode(value);
return;
} // 建立二叉树
while (true) {
// 新增的value比节点的value小,则在左子树
if (value < currentNode.value ) {
if (currentNode.leftNode == null) {
currentNode. leftNode = new TreeNode(value);
return;
} else {
currentNode = currentNode. leftNode;
}
} else { // 新增的value比节点的value大,在右子树
if (currentNode.rightNode == null) {
currentNode. rightNode = new TreeNode(value);
return;
} else {
currentNode = currentNode. rightNode;
}
}
}
} /**
* 中序遍历(左子树 -树根- 右子树)
*/
public void inOrder(TreeNode node) {
if (node != null) {
inOrder(node. leftNode);
System. out.print("[" + node.value + "]");
inOrder(node. rightNode);
}
} /**
* 前序遍历(树根 -左子树- 右子树)
*/
public void preOrder(TreeNode node) {
if (node != null) {
System. out.print("[" + node.value + "]");
preOrder(node. leftNode);
preOrder(node. rightNode);
}
} /**
* 后序遍历(左子树 -右子树- 树根)
*/
public void postOrder(TreeNode node) {
if (node != null) {
postOrder(node. leftNode);
postOrder(node. rightNode);
System. out.print("[" + node.value + "]");
}
} /**
* 从二叉树中查找指定value
*/
public boolean findTree(TreeNode node, int value) {
if (node == null) {
System. out.println("共搜索" + count + "次");
return false;
} else if (node.value == value) {
System. out.println("共搜索" + count + "次");
return true;
} else if (value < node.value) {
count++;
return findTree(node.leftNode , value);
} else {
count++;
return findTree(node.rightNode , value);
}
} /**
* 利用中序遍历进行排序
*/
public void sort() {
this.inOrder(rootNode );
} class TreeNode {
int value ;
TreeNode leftNode;
TreeNode rightNode; public TreeNode(int value) {
this.value = value;
this.leftNode = null;
this.rightNode = null;
}
} public static void main(String[] args) {
int[] content = { 50, 35, 27, 45, 40, 48, 78, 56, 90 }; BinaryTree tree = new BinaryTree(content);
System. out.println("前序遍历:" );
tree.preOrder(tree. rootNode);
System. out.println("\n中序遍历:" );
tree.inOrder(tree. rootNode);
System. out.println("\n后序遍历:" );
tree.postOrder(tree. rootNode); System. out.println("\n\n开始搜索:" );
boolean isFind = tree.findTree(tree.rootNode, 48);
System. out.println("是否搜索到" + 48 + ":" + isFind); System. out.println("\n进行排序:" );
tree.sort();
}
}
看下运行结果:
前序遍历:
[50][35][27][45][40][48][78][56][90]
中序遍历:
[27][35][40][45][48][50][56][78][90]
后序遍历:
[27][40][48][45][35][56][90][78][50] 开始搜索:
共搜索3次
是否搜索到48:true 进行排序:
[27][35][40][45][48][50][56][78][90]
2.TreeMap的底层实现
public class TreeMap<K,V>
2 extends AbstractMap<K,V>
3 implements NavigableMap<K,V>, Cloneable, java.io.Serializable
可以看到TreeMap继承了AbstractMap抽象类,并实现NavigableMap、Cloneable、Serializable接口。NavigableMap接口扩展了SortedMap,主要是提供了给定搜索目标返回最接近匹配项的导航方法。这个不是我们今天的重点,这里不做分析了。
下面再看下TreeMap的底层存储相关定义:
// 比较器
private final Comparator<? super K> comparator; // 红黑树根节点
private transient Entry<K,V> root = null; // 集合元素数量
private transient int size = 0; // "fail-fast"集合修改记录
private transient int modCount = 0;
这里的Comparator是一个比较器,这里不详细讲解,后面会单独进行分析,这里只要明白,一个类实现了Comparator接口并重写其compare方法,就能进行比较大小。Entry是树的节点类,我们来看一下Entry的定义:
static final class Entry<K,V> implements Map.Entry<K,V> {
K key;
V value;
// 左孩子节点
Entry<K,V> left = null;
// 右孩子节点
Entry<K,V> right = null;
// 父节点
Entry<K,V> parent;
// 红黑树用来表示节点颜色的属性,默认为黑色
boolean color = BLACK; /**
* 用key,value和父节点构造一个Entry,默认为黑色
*/
Entry(K key, V value, Entry<K,V> parent) {
this.key = key;
this.value = value;
this.parent = parent;
} public K getKey() {
return key ;
} public V getValue() {
return value ;
} public V setValue(V value) {
V oldValue = this.value ;
this.value = value;
return oldValue;
} public boolean equals(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry<?,?> e = (Map.Entry<?,?>)o; return valEquals( key,e.getKey()) && valEquals( value,e.getValue());
} public int hashCode() {
int keyHash = (key ==null ? 0 : key.hashCode());
int valueHash = (value ==null ? 0 : value.hashCode());
return keyHash ^ valueHash;
} public String toString() {
return key + "=" + value;
}
}
Entry类理解起来比较简单(因为我们前面看过很多的Entry类了),主要是定义了树的孩子和父亲节点引用,和红黑颜色属性,并对equals和hashCode进行重写,以利于比较是否相等。
3.TreeMap的构造方法
接下来看下TreeMap的构造方法:
/**
* 默认构造方法,comparator为空,代表使用key的自然顺序来维持TreeMap的顺序,这里要求key必须实现Comparable接口
*/
public TreeMap() {
comparator = null;
} /**
* 用指定的比较器构造一个TreeMap
*/
public TreeMap(Comparator<? super K> comparator) {
this.comparator = comparator;
} /**
* 构造一个指定map的TreeMap,同样比较器comparator为空,使用key的自然顺序排序
*/
public TreeMap(Map<? extends K, ? extends V> m) {
comparator = null;
putAll(m);
} /**
* 构造一个指定SortedMap的TreeMap,根据SortedMap的比较器来来维持TreeMap的顺序
*/
public TreeMap(SortedMap<K, ? extends V> m) {
comparator = m.comparator();
try {
buildFromSorted(m.size(), m.entrySet().iterator(), null, null);
} catch (java.io.IOException cannotHappen) {
} catch (ClassNotFoundException cannotHappen) {
}
}
从构造方法中可以看出,要创建一个红黑树实现的TreeMap必须要有一个用于比较大小的比较器,因为只有能够比较大小才能实现红黑树的左孩子<树根<右孩子的特点
4.红黑树的添加原理及TreeMap的put实现
public V put(K key, V value) {
// 根节点
Entry<K,V> t = root;
// 如果根节点为空,则直接创建一个根节点,返回
if (t == null) {
// TBD:
// 5045147: (coll) Adding null to an empty TreeSet should
// throw NullPointerException
//
// compare(key, key); // type check
root = new Entry<K,V>(key, value, null);
size = 1;
modCount++;
return null;
}
// 记录比较结果
int cmp;
Entry<K,V> parent;
// split comparator and comparable paths
// 当前使用的比较器
Comparator<? super K> cpr = comparator ;
// 如果比较器不为空,就是用指定的比较器来维护TreeMap的元素顺序
if (cpr != null) {
// do while循环,查找key要插入的位置(也就是新节点的父节点是谁)
do {
// 记录上次循环的节点t
parent = t;
// 比较当前节点的key和新插入的key的大小
cmp = cpr.compare(key, t. key);
// 新插入的key小的话,则以当前节点的左孩子节点为新的比较节点
if (cmp < 0)
t = t. left;
// 新插入的key大的话,则以当前节点的右孩子节点为新的比较节点
else if (cmp > 0)
t = t. right;
else
// 如果当前节点的key和新插入的key想的的话,则覆盖map的value,返回
return t.setValue(value);
// 只有当t为null,也就是没有要比较节点的时候,代表已经找到新节点要插入的位置
} while (t != null);
}
else {
// 如果比较器为空,则使用key作为比较器进行比较
// 这里要求key不能为空,并且必须实现Comparable接口
if (key == null)
throw new NullPointerException();
Comparable<? super K> k = (Comparable<? super K>) key;
// 和上面一样,喜欢查找新节点要插入的位置
do {
parent = t;
cmp = k.compareTo(t. key);
if (cmp < 0)
t = t. left;
else if (cmp > 0)
t = t. right;
else
return t.setValue(value);
} while (t != null);
}
// 找到新节点的父节点后,创建节点对象
Entry<K,V> e = new Entry<K,V>(key, value, parent);
// 如果新节点key的值小于父节点key的值,则插在父节点的左侧
if (cmp < 0)
parent. left = e;
// 如果新节点key的值大于父节点key的值,则插在父节点的右侧
else
parent. right = e;
// 插入新的节点后,为了保持红黑树平衡,对红黑树进行调整
fixAfterInsertion(e);
// map元素个数+1
size++;
modCount++;
return null;
} /** 新增节点后对红黑树的调整方法 */
private void fixAfterInsertion(Entry<K,V> x) {
// 将新插入节点的颜色设置为红色
x. color = RED; // while循环,保证新插入节点x不是根节点或者新插入节点x的父节点不是红色(这两种情况不需要调整)
while (x != null && x != root && x. parent.color == RED) {
// 如果新插入节点x的父节点是祖父节点的左孩子
if (parentOf(x) == leftOf(parentOf (parentOf(x)))) {
// 取得新插入节点x的叔叔节点
Entry<K,V> y = rightOf(parentOf (parentOf(x)));
// 如果新插入x的父节点是红色-------------------①
if (colorOf(y) == RED) {
// 将x的父节点设置为黑色
setColor(parentOf (x), BLACK);
// 将x的叔叔节点设置为黑色
setColor(y, BLACK);
// 将x的祖父节点设置为红色
setColor(parentOf (parentOf(x)), RED);
// 将x指向祖父节点,如果x的祖父节点的父节点是红色,按照上面的步奏继续循环
x = parentOf(parentOf (x));
} else {
// 如果新插入x的叔叔节点是黑色或缺少,且x的父节点是祖父节点的右孩子-------------------②
if (x == rightOf( parentOf(x))) {
// 左旋父节点
x = parentOf(x);
rotateLeft(x);
}
// 如果新插入x的叔叔节点是黑色或缺少,且x的父节点是祖父节点的左孩子-------------------③
// 将x的父节点设置为黑色
setColor(parentOf (x), BLACK);
// 将x的祖父节点设置为红色
setColor(parentOf (parentOf(x)), RED);
// 右旋x的祖父节点
rotateRight( parentOf(parentOf (x)));
}
} else { // 如果新插入节点x的父节点是祖父节点的右孩子,下面的步奏和上面的相似,只不过左旋右旋的区分,不在细讲
Entry<K,V> y = leftOf(parentOf (parentOf(x)));
if (colorOf(y) == RED) {
setColor(parentOf (x), BLACK);
setColor(y, BLACK);
setColor(parentOf (parentOf(x)), RED);
x = parentOf(parentOf (x));
} else {
if (x == leftOf( parentOf(x))) {
x = parentOf(x);
rotateRight(x);
}
setColor(parentOf (x), BLACK);
setColor(parentOf (parentOf(x)), RED);
rotateLeft( parentOf(parentOf (x)));
}
}
}
// 最后将根节点设置为黑色,不管当前是不是红色,反正根节点必须是黑色
root.color = BLACK;
} /**
* 对红黑树的节点(x)进行左旋转
*
* 左旋示意图(对节点x进行左旋):
* px px
* / /
* x y
* / \ --(左旋)-- / \
* lx y x ry
* / \ / \
* ly ry lx ly
*
*/
private void rotateLeft(Entry<K,V> p) {
if (p != null) {
// 取得要选择节点p的右孩子
Entry<K,V> r = p. right;
// "p"和"r的左孩子"的相互指向...
// 将"r的左孩子"设为"p的右孩子"
p. right = r.left ;
// 如果r的左孩子非空,将"p"设为"r的左孩子的父亲"
if (r.left != null)
r. left.parent = p; // "p的父亲"和"r"的相互指向...
// 将"p的父亲"设为"y的父亲"
r. parent = p.parent ;
// 如果"p的父亲"是空节点,则将r设为根节点
if (p.parent == null)
root = r;
// 如果p是它父节点的左孩子,则将r设为"p的父节点的左孩子"
else if (p.parent. left == p)
p. parent.left = r;
else
// 如果p是它父节点的左孩子,则将r设为"p的父节点的左孩子"
p. parent.right = r;
// "p"和"r"的相互指向...
// 将"p"设为"r的左孩子"
r. left = p;
// 将"p的父节点"设为"r"
p. parent = r;
}
} /**
* 对红黑树的节点进行右旋转
*
* 右旋示意图(对节点y进行右旋):
* py py
* / /
* y x
* / \ --(右旋)-- / \
* x ry lx y
* / \ / \
* lx rx rx ry
*
*/
private void rotateRight(Entry<K,V> p) {
if (p != null) {
// 取得要选择节点p的左孩子
Entry<K,V> l = p. left;
// 将"l的右孩子"设为"p的左孩子"
p. left = l.right ;
// 如果"l的右孩子"不为空的话,将"p"设为"l的右孩子的父亲"
if (l.right != null) l. right.parent = p;
// 将"p的父亲"设为"l的父亲"
l. parent = p.parent ;
// 如果"p的父亲"是空节点,则将l设为根节点
if (p.parent == null)
root = l;
// 如果p是它父节点的右孩子,则将l设为"p的父节点的右孩子"
else if (p.parent. right == p)
p. parent.right = l;
//如果p是它父节点的左孩子,将l设为"p的父节点的左孩子"
else p.parent .left = l;
// 将"p"设为"l的右孩子"
l. right = p;
// 将"l"设为"p父节点"
p. parent = l;
}
}
单纯的看代码和注释,绝对会发出,cha这是什么乱七八糟的,任谁也看不懂,所以一定要结合上面的图解,不懂了就看看图,然后动手画一下。如果你告诉我,还是没有懂,没问题可以理解,这里有一位大神录制的红黑树增加元素视频动画,来吧,http://v.youku.com/v_show/id_XNjI4NzgxMjA4.html(视频不是我录得,尊重版权,向大神致敬)。
5.红黑树的删除原理及TreeMap的remove实现
public V remove(Object key) {
// 根据key查找到对应的节点对象
Entry<K,V> p = getEntry(key);
if (p == null)
return null; // 记录key对应的value,供返回使用
V oldValue = p. value;
// 删除节点
deleteEntry(p);
return oldValue;
} private void deleteEntry(Entry<K,V> p) {
modCount++;
// map容器的元素个数减一
size--; // If strictly internal, copy successor's element to p and then make p
// point to successor.
// 如果被删除的节点p的左孩子和右孩子都不为空,则查找其替代节点-----------这里表示要删除的节点有两个孩子(3)
if (p.left != null && p. right != null) {
// 查找p的替代节点
Entry<K,V> s = successor (p);
p. key = s.key ;
p. value = s.value ;
// 将p指向替代节点,※※※※※※从此之后的p不再是原先要删除的节点p,而是替代者p(就是图解里面讲到的M) ※※※※※※
p = s;
} // p has 2 children // Start fixup at replacement node, if it exists.
// replacement为替代节点p的继承者(就是图解里面讲到的N),p的左孩子存在则用p的左孩子替代,否则用p的右孩子
Entry<K,V> replacement = (p. left != null ? p.left : p. right); if (replacement != null) { // 如果上面的if有两个孩子不通过--------------这里表示要删除的节点只有一个孩子(2)
// Link replacement to parent
// 将p的父节点拷贝给替代节点
replacement. parent = p.parent ;
// 如果替代节点p的父节点为空,也就是p为跟节点,则将replacement设置为根节点
if (p.parent == null)
root = replacement;
// 如果替代节点p是其父节点的左孩子,则将replacement设置为其父节点的左孩子
else if (p == p.parent. left)
p. parent.left = replacement;
// 如果替代节点p是其父节点的左孩子,则将replacement设置为其父节点的右孩子
else
p. parent.right = replacement; // Null out links so they are OK to use by fixAfterDeletion.
// 将替代节点p的left、right、parent的指针都指向空,即解除前后引用关系(相当于将p从树种摘除),使得gc可以回收
p. left = p.right = p.parent = null; // Fix replacement
// 如果替代节点p的颜色是黑色,则需要调整红黑树以保持其平衡
if (p.color == BLACK)
fixAfterDeletion(replacement);
} else if (p.parent == null) { // return if we are the only node.
// 如果要替代节点p没有父节点,代表p为根节点,直接删除即可
root = null;
} else { // No children. Use self as phantom replacement and unlink.
// 判断进入这里说明替代节点p没有孩子--------------这里表示没有孩子则直接删除(1)
// 如果p的颜色是黑色,则调整红黑树
if (p.color == BLACK)
fixAfterDeletion(p);
// 下面删除替代节点p
if (p.parent != null) {
// 解除p的父节点对p的引用
if (p == p.parent .left)
p. parent.left = null;
else if (p == p.parent. right)
p. parent.right = null;
// 解除p对p父节点的引用
p. parent = null;
}
}
} /**
* 查找要删除节点的替代节点
*/
static <K,V> TreeMap.Entry<K,V> successor(Entry<K,V> t) {
if (t == null)
return null;
// 查找右子树的最左孩子
else if (t.right != null) {
Entry<K,V> p = t. right;
while (p.left != null)
p = p. left;
return p;
} else { // 查找左子树的最右孩子
Entry<K,V> p = t. parent;
Entry<K,V> ch = t;
while (p != null && ch == p. right) {
ch = p;
p = p. parent;
}
return p;
}
} /** From CLR */
private void fixAfterDeletion(Entry<K,V> x) {
// while循环,保证要删除节点x不是跟节点,并且是黑色(根节点和红色不需要调整)
while (x != root && colorOf (x) == BLACK) {
// 如果要删除节点x是其父亲的左孩子
if (x == leftOf( parentOf(x))) {
// 取出要删除节点x的兄弟节点
Entry<K,V> sib = rightOf(parentOf (x)); // 如果删除节点x的兄弟节点是红色---------------------------①
if (colorOf(sib) == RED) {
// 将x的兄弟节点颜色设置为黑色
setColor(sib, BLACK);
// 将x的父节点颜色设置为红色
setColor(parentOf (x), RED);
// 左旋x的父节点
rotateLeft( parentOf(x));
// 将sib重新指向旋转后x的兄弟节点 ,进入else的步奏③
sib = rightOf(parentOf (x));
} // 如果x的兄弟节点的两个孩子都是黑色-------------------------③
if (colorOf(leftOf(sib)) == BLACK &&
colorOf(rightOf (sib)) == BLACK) {
// 将兄弟节点的颜色设置为红色
setColor(sib, RED);
// 将x的父节点指向x,如果x的父节点是黑色,需要将x的父节点整天看做一个节点继续调整-------------------------②
x = parentOf(x);
} else {
// 如果x的兄弟节点右孩子是黑色,左孩子是红色-------------------------④
if (colorOf(rightOf(sib)) == BLACK) {
// 将x的兄弟节点的左孩子设置为黑色
setColor(leftOf (sib), BLACK);
// 将x的兄弟节点设置为红色
setColor(sib, RED);
// 右旋x的兄弟节点
rotateRight(sib);
// 将sib重新指向旋转后x的兄弟节点,进入步奏⑤
sib = rightOf(parentOf (x));
}
// 如果x的兄弟节点右孩子是红色-------------------------⑤
setColor(sib, colorOf (parentOf(x)));
// 将x的父节点设置为黑色
setColor(parentOf (x), BLACK);
// 将x的兄弟节点的右孩子设置为黑色
setColor(rightOf (sib), BLACK);
// 左旋x的父节点
rotateLeft( parentOf(x));
// 达到平衡,将x指向root,退出循环
x = root;
}
} else { // symmetric // 如果要删除节点x是其父亲的右孩子,和上面情况一样,这里不再细讲
Entry<K,V> sib = leftOf(parentOf (x)); if (colorOf(sib) == RED) {
setColor(sib, BLACK);
setColor(parentOf (x), RED);
rotateRight( parentOf(x));
sib = leftOf(parentOf (x));
} if (colorOf(rightOf(sib)) == BLACK &&
colorOf(leftOf (sib)) == BLACK) {
setColor(sib, RED);
x = parentOf(x);
} else {
if (colorOf(leftOf(sib)) == BLACK) {
setColor(rightOf (sib), BLACK);
setColor(sib, RED);
rotateLeft(sib);
sib = leftOf(parentOf (x));
}
setColor(sib, colorOf (parentOf(x)));
setColor(parentOf (x), BLACK);
setColor(leftOf (sib), BLACK);
rotateRight( parentOf(x));
x = root;
}
}
} setColor(x, BLACK);
}
6.红黑树的查询
public V get(Object key) {
Entry<K,V> p = getEntry(key);
return (p==null ? null : p. value);
} final Entry<K,V> getEntry(Object key) {
// Offload comparator-based version for sake of performance
if (comparator != null)
// 如果比较器为空,只是用key作为比较器查询
return getEntryUsingComparator(key);
if (key == null)
throw new NullPointerException();
Comparable<? super K> k = (Comparable<? super K>) key;
// 取得root节点
Entry<K,V> p = root;
// 从root节点开始查找,根据比较器判断是在左子树还是右子树
while (p != null) {
int cmp = k.compareTo(p.key );
if (cmp < 0)
p = p. left;
else if (cmp > 0)
p = p. right;
else
return p;
}
return null;
} final Entry<K,V> getEntryUsingComparator(Object key) {
K k = (K) key;
Comparator<? super K> cpr = comparator ;
if (cpr != null) {
Entry<K,V> p = root;
while (p != null) {
int cmp = cpr.compare(k, p.key );
if (cmp < 0)
p = p. left;
else if (cmp > 0)
p = p. right;
else
return p;
}
}
return null;
}
查询看起来真的是so easy。。。
二.TreeMap对NavigableMap接口的实现
Java集合:TreeMap源码剖析的更多相关文章
- 【java集合框架源码剖析系列】java源码剖析之TreeMap
注:博主java集合框架源码剖析系列的源码全部基于JDK1.8.0版本.本博客将从源码角度带领大家学习关于TreeMap的知识. 一TreeMap的定义: public class TreeMap&l ...
- 【java集合框架源码剖析系列】java源码剖析之TreeSet
本博客将从源码的角度带领大家学习TreeSet相关的知识. 一TreeSet类的定义: public class TreeSet<E> extends AbstractSet<E&g ...
- 【java集合框架源码剖析系列】java源码剖析之HashSet
注:博主java集合框架源码剖析系列的源码全部基于JDK1.8.0版本.本博客将从源码角度带领大家学习关于HashSet的知识. 一HashSet的定义: public class HashSet&l ...
- 【java集合框架源码剖析系列】java源码剖析之ArrayList
注:博主java集合框架源码剖析系列的源码全部基于JDK1.8.0版本. 本博客将从源码角度带领大家学习关于ArrayList的知识. 一ArrayList类的定义: public class Arr ...
- 【java集合框架源码剖析系列】java源码剖析之LinkedList
注:博主java集合框架源码剖析系列的源码全部基于JDK1.8.0版本. 在实际项目中LinkedList也是使用频率非常高的一种集合,本博客将从源码角度带领大家学习关于LinkedList的知识. ...
- 【java集合框架源码剖析系列】java源码剖析之HashMap
前言:之所以打算写java集合框架源码剖析系列博客是因为自己反思了一下阿里内推一面的失败(估计没过,因为写此博客已距阿里巴巴一面一个星期),当时面试完之后感觉自己回答的挺好的,而且据面试官最后说的这几 ...
- Java集合——TreeMap源码详解
)TreeMap 是一个有序的key-value集合,它是通过红黑树实现的.因为红黑树是平衡的二叉搜索树,所以其put(包含update操作).get.remove的时间复杂度都为log(n). (2 ...
- Java集合---HashMap源码剖析
一.HashMap概述二.HashMap的数据结构三.HashMap源码分析 1.关键属性 2.构造方法 3.存储数据 4.调整大小 5.数据读取 ...
- [转载] Java集合---HashMap源码剖析
转载自http://www.cnblogs.com/ITtangtang/p/3948406.html 一.HashMap概述 HashMap基于哈希表的 Map 接口的实现.此实现提供所有可选的映射 ...
- 【java集合框架源码剖析系列】java源码剖析之java集合中的折半插入排序算法
注:关于排序算法,博主写过[数据结构排序算法系列]数据结构八大排序算法,基本上把所有的排序算法都详细的讲解过,而之所以单独将java集合中的排序算法拿出来讲解,是因为在阿里巴巴内推面试的时候面试官问过 ...
随机推荐
- R语言学习笔记︱Echarts与R的可视化包——地区地图
笔者寄语:感谢CDA DSC训练营周末上完课,常老师.曾柯老师加了小课,讲了echart与R结合的函数包recharts的一些基本用法.通过对比谢益辉老师GitHub的说明文档,曾柯老师极大地简化了一 ...
- HI3531uboot开机画面
startvo 0 36 13; startgx 0 0x88000000 1600 0 0 800 600; //startgx 0 0x88000000 2048 0 0 1024 768; se ...
- Java Web项目(Extjs)报错五
1. Java Web项目(Extjs)报错五 具体报错如下: usage: java org.apache.catalina.startup.Catalina [ -config {pathname ...
- Error Code: 1054. Unknown column 'age' in 'user'
1.错误描述 10:28:20 alter table user modify age int(3) after sex Error Code: 1054. Unknown column 'age' ...
- Servlet.service() for Servlet jsp threw exception javax.servlet.ServletException:File "/pageFoo
1.错误描述 Servlet.service() for Servlet jsp threw exception javax.servlet.ServletException:File "/ ...
- Error:dojo.data.ItemFileWriteStore:Invalid item argument
1.错误描述 dijit.form.ComboBox TypeError:_4e is undefined Sea ...
- C#中string类型是值类型还是引用类型?
.Net框架程序设计(修订版)中有这样一段描述:String类型直接继承自Object,这使得它成为一个引用类型,也就是说线程上的堆栈上不会驻留有任何字符串. string类型(引用类型) 名称 CT ...
- RobotFramework下的http接口自动化Get Response Status 关键字的使用
Get Response Status 关键字用来获取http请求返回的http状态码. 示例1:访问苏宁易购网站上的http推荐接口,使用Get Response Status 关键字来获取返回的h ...
- 近期安卓与IOS招聘面试有感
版权声明:本文出自汪磊的博客,转载请务必注明出处. 一.你总是想一步登天,却不知道路是一步步走出来的 大概是放年假前一个月开始招聘吧,陆陆续续到目前为止安卓面试10几个,IOS面试了15个左右,本以为 ...
- linux下tomcat 8的安装以及tomcat启动慢问题
今天在 linux 下安装了 tomcat,中间也是一路波折,最终安装好了.感觉应该有不少伙伴跟我一样都会踩到这些坑,打算记录下来.使用的是通用(ubantu,debian, centos 均可)的安 ...