原文出处:

http://lincccc.blogspot.tw/2011/03/cuda-cuts-fast-graph-cuts-on-gpu_03.html

现在需要代理才能访问,所以就转载了。

[论文笔记] CUDA Cuts: Fast Graph Cuts on the GPU

Paper:V. Vineet, P. J. Narayanan. CUDA cuts: Fast graph cuts on the GPU. In Proc. CVPR Workshop, 2008.


问题概述:Graph cut是一种十分有用和流行的能量优化算法,在计算机视觉领域普遍应用于前背景分割(Image segmentation)、立体视觉(stereo vision)、抠图(Image matting)等。但在获得不错效果的同时,Max-flow / Min-cost问题求解的时间代价却很大。本文作者称其所知最佳的Graph cut实现求解一张640×480的图至少需;从 s 出发的所有边初始化 f(e) = c(e),其余边 f(e) =0。Push-relabel算法将不断重复Push和Label操作,直至任意操作都无法进行。 
(更详细的算法步骤推荐查阅Tutorial,点我) 
  
比较形象点,Push-relabel是泛滥的洪水,奔腾向前,堵了就倒流;Ford-Fulkerson则是很温吞的做法,先找个人探路,回来报告能流多少水就开闸放多少。

Push-relabel算法的GPU版: 
存储和线程结构: 
Grid拥有和输入图片一样的维度,并被分为若干个Block,每个Block的维度为 B×B。每个线程对应一个节点(像素),即每个Block对应 B×B 个节点、需要访问 (B+2)×(B+2) 个节点的数据。每个节点包含以下数据:溢出量 e(u),高度 h(u),活跃状态 flag(u) 以及与其相邻节点间的边的容量。活跃状态共3种:Active,e(u) > 0 且 h(u) = h(v) + 1;Passive,e(u) > 0 且 h(u) ≠ h(v) + 1,这种状态在Relabel后可能变成Active;Inactive,没有溢出且没有相邻残留边, 
这些数据存储在全局或设备内存中,被所有线程共享。 
(GPU架构及Cuda指南参考NVidia相关手册,点我) 
  
本文作者通过4个Kernel实现GPU版Push-relabel算法: 
1) Push Kernel (node u):

   ■ 将 h(u) 和 e(u) 从全局内存读入到Block共享内存中(使用共享内存是因为一些数据会被相邻线程共享,这种读入方式相对单独的读入更节省时间);
   ■ 同步线程(使用共享内存都需要做这一步,为了保证所有内存都被完全读入了);
   ■ 将 e(u) 按照Push规则推向相邻节点(不大于边的剩余容量,且 h(u) ≥ h(v) );
   ■ 将以上Preflow记入一个特殊的全局数组 F。

之所以记入 F,而不直接写入相邻节点,是因为在并行Push操作时,一个节点的溢出值同时受到多个相邻节点的影响,如果直接写入,可能造成数据的不一致性(Read-after-write data consistency)。因此,作者将原来的Push操作分成了Push和Pull两个Kernel执行(另一种选择是在同一个Kernel中分两部分执行,之间进行一次同步,但是对于Block边缘的节点,这种同步需要等待其他Block的线程,这种Block间的同步并不被所有GPU支持)。 
  
2) Pull Kernel (node u):

   ■ 读入 F 中推向 u 的Preflow;
   ■ 累加所有新的Preflow,得到最终的溢出值,记入 e(u) 到全局内存。

3) Local Relabel Kernal (node u): 
按照经典Push-relabel算法中的Relabel操作,局部地调整节点的高度

   ■ 将 h(u) 和 flag(u) 从全局内存读入到Block共享内存中;
   ■ 同步线程;
   ■ 计算 u 相邻 active / passive 节点的最小高度;
   ■ 该最小高度+1,作为新高度写入 h(u) 到全局内存。

4) Global Relabel Kernal: 
从终点 t 开始,按照广度优先策略,遍历所有节点,更新其高度至正确的距离(节点的高度总是其与终点距离的下限)。迭代次数 k 被记录与全局内存中。

   ■ 如果 k == 1,所有与 t 相邻且有残留边的节点高度被设为 1;
   ■ 所有未被设置的节点检查其相邻节点,若其相邻节点的高度为 k,则设置该节点高度为 k+1;
   ■ 更新高度值到全局内存。

算法总体流程: 
a. 计算能量矩阵 → b. Push+Pull Kernel循环 → c. Local Relabel Kernel循环 → d. Global Relabel Kernel循环 → e. 重复b到d至收敛(没有可进行的Push和Relabel操作)


作者还基于GPU实现了Dynamic graph cut,应用于连续细微变化的Graph cut,通过对前一帧的简单修改形成新图,重用其他数据,加速Max-flow的求解。作者的实验数据称GPU实现可以提速70-100倍。不过具体应用具体分析,提速肯定是有的,多少未知,要待我实现过试验过。据说这个印度人提供的代码Bug颇多,虽然不太信,但还是先做了要重新实现的准备。末了,吐个槽,这论文贡献不大,确实只是发Workshop的水平。 

CUDA Cuts: Fast Graph Cuts on the GPU的更多相关文章

  1. [论文笔记] CUDA Cuts: Fast Graph Cuts on the GPU

    Paper:V. Vineet, P. J. Narayanan. CUDA cuts: Fast graph cuts on the GPU. In Proc. CVPR Workshop, 200 ...

  2. Graph cuts图论分割

    Graph cuts是一种十分有用和流行的能量优化算法,在计算机视觉领域普遍应用于前背景分割(Image segmentation).立体视觉(stereo vision).抠图(Image matt ...

  3. Graph Cuts初步理解

    一些知识点的初步理解_8(Graph Cuts,ing...) Graph cuts是一种十分有用和流行的能量优化算法,在计算机视觉领域普遍应用于前背景分割(Image segmentation).立 ...

  4. Graph Cuts学习笔记2014.5.16----1

    进行了一段时间的论文学习后,现在下载了一些代码,准备从OpenCV跟matlab两个方面着手搭建自己的图像分割平台,计划耗时一个月左右的时间! 昨天去西工大,听了一场Graph Asia的报告,里面有 ...

  5. 图像分割——graph cuts

    Graph cuts是一种基于图论的方法,它是一种能量优化算法,在计算机视觉领域应用于前景背景分割,立体视觉,抠图等. 这类方法首先使用无向图G=<V,E>表示要分割的图像,V和E分别是顶 ...

  6. vs2015+opencv3.3.1+ maxflow-v3.01 c++实现Yuri Boykov 的Interactive Graph Cuts

    出的结果不理想. 感觉是tlink的权重的计算有问题,以及参数的设置.三个可设置参数是后面的 i j k  .如果你找到了一组好参数请告诉我. 下载地址 http://download.csdn.ne ...

  7. Win10 x64 + CUDA 10.0 + cuDNN v7.5 + TensorFlow GPU 1.13 安装指南

    Win10 x64 + CUDA 10.0 + cuDNN v7.5 + TensorFlow GPU 1.13 安装指南 Update : 2019.03.08 0. 环境说明 硬件:Ryzen R ...

  8. Meet Dgraph — an open source, scalable, distributed, highly available and fast graph databas

    https://dgraph.io/ Meet Dgraph — an open source, scalable, distributed, highly available and fast gr ...

  9. Ubuntu 16.04 + CUDA 8.0 + cuDNN v5.1 + TensorFlow(GPU support)安装配置详解

    随着图像识别和深度学习领域的迅猛发展,GPU时代即将来临.由于GPU处理深度学习算法的高效性,使得配置一台搭载有GPU的服务器变得尤为必要. 本文主要介绍在Ubuntu 16.04环境下如何配置Ten ...

随机推荐

  1. Linux 下的一个全新的性能测量和调式诊断工具 Systemtap,第 1 部分: kprobe

    kprobe 的原理.编程接口.局限性和使用注意事项 本系列文章详细地介绍了一个Linux下的全新的调式.诊断和性能测量工具Systemtap和它所依赖的基础kprobe以及促使开发该工具的先驱DTr ...

  2. Swift中如何化简标准库中冗长的类实例初始化代码

    可能有些童鞋并不知道,在Swift中缩写点符号对于任何类型的任何static成员都有效. 我们实际写一个例子看一下: import UIKit class CFoo{ static let share ...

  3. 剑指Offer——知识点储备-数据库基础

    剑指Offer--知识点储备-数据库基础 数据库 事务 事务的四个特性(ACID):   原子性(Atomicity).一致性(Consistency).隔离性(Isolation).持久性(Dura ...

  4. Android Multimedia框架总结(十七)音频开发基础知识

    请尊重分享成果,转载请注明出处,本文来自逆流的鱼yuiop,原文链接:http://blog.csdn.net/hejjunlin/article/details/53078828 近年来,唱吧,全民 ...

  5. SLAMCN资料收藏转载

    网页链接地址:http://www.slamcn.org/index.php/%E9%A6%96%E9%A1%B5 资料非常丰富,内容如下: 首页 目录 [隐藏]  1 SLAM 介绍 1.1 什么是 ...

  6. 用scheme最基本的元素定义排序函数

    用到的元素有9个: define,if,null?,cons car,cdr,lambda,let,named let, 其实let 和 named let可以去掉.但那样会带来性能和可读性下降的问题 ...

  7. Android下DrawerLayout的使用

    Android下DrawerLayout的使用 DrawerLayout见名知意,就是一个具有抽屉效果的布局,看看这个效果图,是不是感觉很炫酷 这么炫的效果其实不一定非要用类似一些SlidingMen ...

  8. FFmpeg的H.264解码器源代码简单分析:环路滤波(Loop Filter)部分

    ===================================================== H.264源代码分析文章列表: [编码 - x264] x264源代码简单分析:概述 x26 ...

  9. 20 ViewPager Demo4自动轮播

    MainActivity.java 思想:才用非常大的数 让其看起来可以循环轮播图片并且用户可以从尽头滑到首图的特点 . package com.qf.day20_viewpager_demo4; i ...

  10. 非负矩阵分解NMF

    http://blog.csdn.net/pipisorry/article/details/52098864 非负矩阵分解(NMF,Non-negative matrix factorization ...