python进阶之生成器
迭代器
什么叫迭代
可以被for循环的就说明他们是可迭代的,比如:字符串,列表,字典,元祖,们都可以for循环获取里面的数据
下面我们看一个代码:
number = 12345
for i in number:
print(i)
输出:
Traceback (most recent call last):
File "D:**.py", line 272, in <module>
for i in number:
TypeError: 'int' object is not iterable
报错信息是说:int类型不可迭代,不能使用循环取每个数据。 那么我们又怎么说 字符串,列表,字典,元祖是可迭代的呢?
from collections import Iterable l = [1, 2, 3, 4]
t = (1, 2, 3, 4)
d = {1: 2, 3: 4}
s = {1, 2, 3, 4} print(isinstance(l, Iterable)) # 判断是否是可迭代
print(isinstance(t, Iterable))
print(isinstance(d, Iterable))
print(isinstance(s, Iterable))
True
True
True
True
再从字面上理解一下,其实迭代就是我们刚刚说的,可以将某个数据集内的数据“一个挨着一个的取出来”,就叫做迭代。
什么叫可迭代协议
我们现在是从结果分析原因,能被for循环的就是“可迭代的”,但是如果正着想,for怎么知道谁是可迭代的呢?
假如我们自己写了一个数据类型,希望这个数据类型里的东西也可以使用for被一个一个的取出来,那我们就必须满足for的要求。这个要求就叫做“协议”。
可以被迭代要满足的要求就叫做可迭代协议。可迭代协议的定义非常简单,就是内部实现了__iter__方法。
print(dir([1,2]))
print(dir((1,1)))
print(dir({1:2}))
print(dir({1,2}))
输出:
['__add__', '__class__', '__contains__', '__delattr__', '__delitem__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__gt__', '__hash__', '__iadd__', '__imul__', '__init__', '__init_subclass__', '__iter__', '__le__', '__len__', '__lt__', '__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__reversed__', '__rmul__', '__setattr__', '__setitem__', '__sizeof__', '__str__', '__subclasshook__', 'append', 'clear', 'copy', 'count', 'extend', 'index', 'insert', 'pop', 'remove', 'reverse', 'sort']
['__add__', '__class__', '__contains__', '__delattr__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__getnewargs__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__iter__', '__le__', '__len__', '__lt__', '__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__rmul__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', 'count', 'index']
['__class__', '__contains__', '__delattr__', '__delitem__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__iter__', '__le__', '__len__', '__lt__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__setitem__', '__sizeof__', '__str__', '__subclasshook__', 'clear', 'copy', 'fromkeys', 'get', 'items', 'keys', 'pop', 'popitem', 'setdefault', 'update', 'values']
['__and__', '__class__', '__contains__', '__delattr__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__gt__', '__hash__', '__iand__', '__init__', '__init_subclass__', '__ior__', '__isub__', '__iter__', '__ixor__', '__le__', '__len__', '__lt__', '__ne__', '__new__', '__or__', '__rand__', '__reduce__', '__reduce_ex__', '__repr__', '__ror__', '__rsub__', '__rxor__', '__setattr__', '__sizeof__', '__str__', '__sub__', '__subclasshook__', '__xor__', 'add', 'clear', 'copy', 'difference', 'difference_update', 'discard', 'intersection', 'intersection_update', 'isdisjoint', 'issubset', 'issuperset', 'pop', 'remove', 'symmetric_difference', 'symmetric_difference_update', 'union', 'update']
现在我们可以知道:可以被for循环的都是可迭代的,要想迭代内部必须有一个__iter__方法。
那么这个方法又干了些什么事情呢?
print([1,2].__iter__()) 结果
<list_iterator object at 0x1024784a8>
看结果,应该是得到了一个可迭代对象list_iterator 就是一个迭代器,现在我们知道这个列表有一个迭代器了
print(set(dir([1,2].__iter__()))-set(dir([1,2]))) 输出:
{'__next__', '__setstate__', '__length_hint__'}
我们获取了列表迭代器3个方法,那么这些方法又干了什么呢? 我们只说__next__
iter = [1,2,3,4,5,6].__iter__() #一个一个的取值
print(iter.__next__())
print(iter.__next__())
输出:
1
2
我们看到的结果是取到了列表的前两个元素,所以说,for循环就是调用了内部的__next__方法实现遍历的,我们可以不使用for循环,直接调用这个方法就可以实现遍历列表元素
但是如果我们列表有3个元素我们调用__next__4次就会抛出异常StopIteration,因为没有第4个元素
iter = [1,2,3].__iter__() #一个一个的取值
print(iter.__next__())
print(iter.__next__())
print(iter.__next__())
print(iter.__next__())
输出:
Traceback (most recent call last):
1
File "D:/pythonSeleniumTestCode/pythonStu/python练习100例.py", line 295, in <module>
2
print(iter.__next__())
3
StopIteration
现在我们把这个异常处理一下
iter = [1,2,3].__iter__()
while 1:
try:
item = iter.__next__()
print(item)
except StopIteration:
break
那现在我们就使用while循环实现了原本for循环做的事情,我们是从谁那儿获取一个一个的值呀?是不是就是l_iter?好了,这个l_iter就是一个迭代器。
迭代器遵循迭代器协议:必须拥有__iter__方法和__next__方法。
现在我们已经大概有了迭代器的印象,那么我们再来看看生成器是个什么鬼!
生成器
我们知道的迭代器有两种:一种是调用方法直接返回的,一种是可迭代对象通过执行iter方法得到的,迭代器有的好处是可以节省内存。
如果在某些情况下,我们也需要节省内存,就只能自己写。我们自己写的这个能实现迭代器功能的东西就叫生成器
Python中提供的生成器
1.生成器函数:常规函数定义,但是,使用yield语句而不是return语句返回结果。yield语句一次返回一个结果,在每个结果中间,挂起函数的状态,以便下次重它离开的地方继续执行
2.生成器表达式:类似于列表推导,但是,生成器返回按需产生结果的一个对象,而不是一次构建一个结果列表
生成器Generator
本质:迭代器(所以自带了__iter__方法和__next__方法,不需要我们去实现)
特点:惰性运算,开发者自定义
看实例代码:
def genrator():
for i in range(1, 5):
yield ('正在生成数字{}'.format(i)) # yie = genrator()
for i in yie:
print(i)
输出:
正在生成数字1
正在生成数字2
正在生成数字3
正在生成数字4
如果我只想生成2个数字我们该怎么实现呢?是不是这样?
yie = genrator()
num = 0
for i in yie:
print(i)
num+=1
if num == 2:
break
输出:
正在生成数字1
正在生成数字2
现在们已经生成了2个数字了,那么我想接着生成,还可不可以呢?
def genrator():
for i in range(1, 5):
yield ('正在生成数字{}'.format(i)) yie = genrator()
num = 0
for i in yie:
print(i)
num+=1
if num == 2:
print('我只能生成2个数')
break
for i in yie:
print(i)
输出:
正在生成数字1
正在生成数字2
我只能生成2个数
正在生成数字3
正在生成数字4
结果我们分析出,生成2个数以后既然还可以接着原来的生成。
下面我们再来看看到底怎么使用生成器,我现在要监听一个文件的输入,如果文件中增加了数据,我就在控制到输出增加的内容
import time def tail(filename):
f = open(filename)
f.seek(0, 2) #从文件末尾算起
while True:
line = f.readline() # 读取文件中新的文本行
if not line:
time.sleep(0.1)
continue
yield line tail_g = tail('tmp.txt')
for line in tail_g:
print(line)
只要我再A文件中写入一行数据,那么控制到就会输出这行数据,我们就达到了监听文件的作用,是不是还挺好用的!
结论
生成器好处
1.不会占用太多的内存,我们需要生成一个数就生成,不需要就不用叫他生成
2.延迟计算,一次返回一个结果。也就是说,它不会一次生成所有的结果,这对于大数据量处理,将会非常有用。
什么是生成器
只要含有yield关键字的函数都是生成器函数, 且yield不能与return一起使用,二者存一,而且只能写在函数的内部
python进阶之生成器的更多相关文章
- Python进阶(四)----生成器、列表推导式、生成器推导式、匿名函数和内置函数
Python进阶(四)----生成器.列表推导式.生成器推导式.匿名函数和内置函数 一丶生成器 本质: 就是迭代器 生成器产生的方式: 1.生成器函数
- Python 进阶_生成器 & 生成器表达式
目录 目录 相关知识点 生成器 生成器 fab 的执行过程 生成器和迭代器的区别 生成器的优势 加强的生成器特性 生成器表达式 生成器表达式样例 小结 相关知识点 Python 进阶_迭代器 & ...
- Python进阶-VI 生成器函数进阶、生成器表达式、推导式
一.生成器函数进阶 需求:求取移动平均数 1.应用场景之一,在奥运会气枪射击比赛中,每打完一发都会显示平均环数! def show_avg(): print('你已进入显示移动平均环数系统!') a ...
- 十三. Python基础(13)--生成器进阶
十三. Python基础(13)--生成器进阶 1 ● send()方法 generator.send(value) Resumes the execution, and "sends&qu ...
- Python进阶:函数式编程实例(附代码)
Python进阶:函数式编程实例(附代码) 上篇文章"几个小例子告诉你, 一行Python代码能干哪些事 -- 知乎专栏"中用到了一些列表解析.生成器.map.filter.lam ...
- Python进阶 - 命名空间与作用域
Python进阶 - 命名空间与作用域 写在前面 如非特别说明,下文均基于Python3 命名空间与作用于跟名字的绑定相关性很大,可以结合另一篇介绍Python名字.对象及其绑定的文章. 1. 命名空 ...
- Python进阶5---StringIO和BytesIO、路径操作、OS模块、shutil模块
StringIO StringIO操作 BytesIO BytesIO操作 file-like对象 路径操作 路径操作模块 3.4版本之前:os.path模块 3.4版本开始 建议使用pathlib模 ...
- python进阶篇
python进阶篇 import 导入模块 sys.path:获取指定模块搜索路径的字符串集合,可以将写好的模块放在得到的某个路径下,就可以在程序中import时正确找到. import sys ...
- [Book Content]Python进阶
python进阶 原书内容https://github.com/eastlakeside/interpy-zh 通过记录书本目录和大概内容做一个记录,方便以后回顾检索. Chapter Title B ...
随机推荐
- 解决Error:All flavors must now belong to a named flavor dimension. Learn more at...
低版本的gradle里面不会出现这个错误,高版本出现,不多说,看如何解决 在defaultConfig{}中添加:flavorDimensions "default" 保证所有的f ...
- SQLServer之修改数据库架构
修改数据库架构注意事项 用户与架构完全分离. ALTER SCHEMA 仅可用于在同一数据库中的架构之间移动安全对象. 若要更改或删除架构中的安全对象,请使用特定于该安全对象的 ALTER 或 DRO ...
- 解决 VS2019 打开 edmx 文件时没有 Diagram 视图的 Bug
问题描述 安装 VS 2019 (版本:16.0.2)后,发现更新选项中已经没有 “Entity Framework 6.X 工具” 了,打开 .edmx 文件时,呈现的视图是 xml 视图. 解决方 ...
- Java面向对象概述及三大特征(封装,继承和多态)
一.面向对象思想 Java是面向对象的高级语言,对于Java语言来说,万事万物皆对象! 它的基本思想是使用类,对象,继承,封装,消息等基本概念进行程序设计.面向对象程序的最小单元是类,类代表了客观世界 ...
- python的进程与线程(二)
线程 之前了解了操作系统的发展史,也知道了进程和线程的概念,归纳一下就是: 进程:本质上就是一段程序的运行过程(抽象的概念) 线程:最小的执行单元,是进程的实体 ...
- 我眼中的 Nginx(二):HTTP/2 dynamic table size update
张超:又拍云系统开发高级工程师,负责又拍云 CDN 平台相关组件的更新及维护.Github ID: tokers,活跃于 OpenResty 社区和 Nginx 邮件列表等开源社区,专注于服务端技术的 ...
- 5G网络与4G相比,有什么区别?
5G 是 2018 年移动通信领域的热词.从中兴的芯片卡脖事件,联想 5G 投票风波再到华为频遭威胁.这些事件都引起了大家对于 5G 的关注,那么 5G 到底是什么,它和 4G 有什么区别呢? 今天就 ...
- .NET Core微服务之基于EasyNetQ使用RabbitMQ消息队列
Tip: 此篇已加入.NET Core微服务基础系列文章索引 一.消息队列与RabbitMQ 1.1 消息队列 “消息”是在两台计算机间传送的数据单位.消息可以非常简单,例如只包含文本字符串:也可以更 ...
- 使用Atlas进行元数据管理之Atlas简介
背景:笔者和团队的小伙伴近期在进行数据治理/元数据管理方向的探索, 在接下来的系列文章中, 会陆续与读者们进行分享在此过程中踩过的坑和收获. 元数据管理系列文章: [0] - 使用Atlas进行元数据 ...
- asp.net mvc 简单项目框架的搭建(二)—— Spring.Net在Mvc中的简单应用
摘要:上篇写了如何搭建一个简单项目框架的上部分,讲了关于Dal和Bll之间解耦的相关知识,这篇来把后i面的部分说一说. 上篇讲到DbSession,现在接着往下讲. 首先,还是把一些类似的操作完善一下 ...