转自:http://www.cnblogs.com/webdeve/p/7865520.html本文摘要:

输入网址

当我们在浏览器输入网址并回车后,一切从这里开始。

一、DNS域名解析

我们在浏览器输入网址,其实就是要向服务器请求我们想要的页面内容,所有浏览器首先要确认的是域名所对应的服务器在哪里。将域名解析成对应的服务器IP地址这项工作,是由DNS服务器来完成的。

客户端收到你输入的域名地址后,它首先去找本地的hosts文件,检查在该文件中是否有相应的域名、IP对应关系,如果有,则向其IP地址发送请求,如果没有,再去找DNS服务器。一般用户很少去编辑修改hosts文件。

DNS服务器层次结构

 

浏览器客户端向本地DNS服务器发送一个含有域名www.cnblogs.com的DNS查询报文。本地DNS服务器把查询报文转发到根DNS服务器,根DNS服务器注意到其com后缀,于是向本地DNS服务器返回comDNS服务器的IP地址。本地DNS服务器再次向comDNS服务器发送查询请求,comDNS服务器注意到其www.cnblogs.com后缀并用负责该域名的权威DNS服务器的IP地址作为回应。最后,本地DNS服务器将含有www.cnblogs.com的IP地址的响应报文发送给客户端。

从客户端到本地服务器属于递归查询,而DNS服务器之间的交互属于迭代查询

正常情况下,本地DNS服务器的缓存中已有comDNS服务器的地址,因此请求根域名服务器这一步不是必需的。

二、建立TCP链接

费了一顿周折终于拿到服务器IP了,下一步自然就是链接到该服务器。对于客户端与服务器的TCP链接,必然要说的就是『三次握手』。

三次握手

客户端发送一个带有SYN标志的数据包给服务端,服务端收到后,回传一个带有SYN/ACK标志的数据包以示传达确认信息,最后客户端再回传一个带ACK标志的数据包,代表握手结束,连接成功。

上图也可以这么理解:

客户端:“你好,在家不,有你快递。”

服务端:“在的,送来就行。”

客户端:“好嘞。”

三、发送HTTP请求

与服务器建立了连接后,就可以向服务器发起请求了。这里我们先看下请求报文的结构(如下图):

请求报文

在浏览器中查看报文首部(以google浏览器为例):

 

请求行包括请求方法、URI、HTTP版本。首部字段传递重要信息,包括请求首部字段、通用首部字段和实体首部字段。我们可以从报文中看到发出的请求的具体信息。具体每个首部字段的作用,这里不做过多阐述。

四、服务器处理请求

服务器端收到请求后的由web服务器(准确说应该是http服务器)处理请求,诸如Apache、Ngnix、IIS等。web服务器解析用户请求,知道了需要调度哪些资源文件,再通过相应的这些资源文件处理用户请求和参数,并调用数据库信息,最后将结果通过web服务器返回给浏览器客户端。

服务器处理请求

五、返回响应结果

在HTTP里,有请求就会有响应,哪怕是错误信息。这里我们同样看下响应报文的组成结构:

响应报文

在响应结果中都会有个一个HTTP状态码,比如我们熟知的200、301、404、500等。通过这个状态码我们可以知道服务器端的处理是否正常,并能了解具体的错误。

状态码由3位数字和原因短语组成。根据首位数字,状态码可以分为五类:

状态码类别

六、关闭TCP连接

为了避免服务器与客户端双方的资源占用和损耗,当双方没有请求或响应传递时,任意一方都可以发起关闭请求。与创建TCP连接的3次握手类似,关闭TCP连接,需要4次握手。

4次握手

上图可以这么理解:

客户端:“兄弟,我这边没数据要传了,咱关闭连接吧。”

服务端:“收到,我看看我这边有木有数据了。”

服务端:“兄弟,我这边也没数据要传你了,咱可以关闭连接了。”

客户端:“好嘞。”

七、浏览器解析HTML

准确地说,浏览器需要加载解析的不仅仅是HTML,还包括CSS、JS。以及还要加载图片、视频等其他媒体资源。

浏览器通过解析HTML,生成DOM树,解析CSS,生成CSS规则树,然后通过DOM树和CSS规则树生成渲染树。渲染树与DOM树不同,渲染树中并没有head、display为none等不必显示的节点。

要注意的是,浏览器的解析过程并非是串连进行的,比如在解析CSS的同时,可以继续加载解析HTML,但在解析执行JS脚本时,会停止解析后续HTML,这就会出现阻塞问题,关于JS阻塞相关问题,这里不过多阐述,后面会单独开篇讲解。

八、浏览器布局渲染

根据渲染树布局,计算CSS样式,即每个节点在页面中的大小和位置等几何信息。HTML默认是流式布局的,CSS和js会打破这种布局,改变DOM的外观样式以及大小和位置。这时就要提到两个重要概念:replaint和reflow。

replaint:屏幕的一部分重画,不影响整体布局,比如某个CSS的背景色变了,但元素的几何尺寸和位置不变。

reflow: 意味着元件的几何尺寸变了,我们需要重新验证并计算渲染树。是渲染树的一部分或全部发生了变化。这就是Reflow,或是Layout。

所以我们应该尽量减少reflow和replaint,我想这也是为什么现在很少有用table布局的原因之一。

最后浏览器绘制各个节点,将页面展示给用户。

总结

本文系统地讲述从浏览器从输入域名到最终页面展示的整体流程。篇幅所限,本文的每一步讲述其实并不全面,所以后面我会单独就域名解析、HTTP请求/响应、浏览器的解析、渲染等内容单独开篇讲解,感兴趣的朋友也可以关注我的个人博客

【转】浏览器输入URL后发生了什么的更多相关文章

  1. 在浏览器输入URL后发生了什么?

    摘录部分一:https://www.cnblogs.com/kongxy/p/4615226.html 从输入URL到浏览器显示页面发生了什么 当在浏览器地址栏输入网址,如:www.baidu.com ...

  2. 天龙八步"细说浏览器输入URL后发生了什么

    本文摘要: 1.DNS域名解析: 2.建立TCP连接: 3.发送HTTP请求: 4.服务器处理请求: 5.返回响应结果: 6.关闭TCP连接: 7.浏览器解析HTML: 8.浏览器布局渲染: 总结 输 ...

  3. “天龙八步”细说浏览器输入URL后发生了什么

    本文摘要: 1.DNS域名解析: 2.建立TCP连接: 3.发送HTTP请求: 4.服务器处理请求: 5.返回响应结果: 6.关闭TCP连接: 7.浏览器解析HTML: 8.浏览器布局渲染: 总结 输 ...

  4. 细说浏览器输入URL后发生了什么

    本文摘要: 1.DNS域名解析: 2.建立TCP连接: 3.发送HTTP请求: 4.服务器处理请求: 5.返回响应结果: 6.关闭TCP连接: 7.浏览器解析HTML: 8.浏览器布局渲染: 总结   ...

  5. 浏览器输入url后发生的事情以及每步可以做的优化

    首先总结下输入url按下回车后的大致流程: 查询url的ip地址. 建立tcp连接,连接服务器. 浏览器发起http/https请求. 服务器响应浏览器的请求. 网页的解析与渲染. 下面分析每个过程 ...

  6. 浏览器输入URL后发生了什么

    假如在浏览器中输入了www.cnblogs.com,然后回车 DNS解析 浏览器检查浏览器缓存是否有域名对应的IP. 浏览器查找操作系统是否有对应的DNS解析成果(hosts文件). 查找路由器缓存. ...

  7. [译]当你在浏览器输入url后发生了什么

    面试题会经常问这个,之前也被问过,回答的不是很好,后来看到百度前端的一篇博客,啰嗦了好多,很么触摸屏都上了..后来看到stackoverflow上的一个回答,比较短. 原文地址:http://stac ...

  8. 前端基础:”天龙八步“细说浏览器输入URL后发生了什么

    参考:https://www.xuecaijie.com/it/157.html#1Q64p5DeC8dKFF 本文摘要: 1.DNS域名解析: 2.建立TCP连接: 3.发送HTTP请求: 4.服务 ...

  9. 【转】浏览器中输入url后发生了什么

    原文地址:http://www.jianshu.com/p/c1dfc6caa520 在学习前端的过程中经常看到这样一个问题:当你在浏览器中输入url后发生了什么?下面是个人学习过程中的总结,供个人复 ...

随机推荐

  1. TCP的核心系列 — SACK和DSACK的实现(四)

    和18版本不同,37版本把DSACK的检测部分独立出来,可读性更好. 37版本在DSACK的处理中也做了一些优化,对DSACK的两种情况分别进行处理. 本文主要内容:DSACK的检测.DSACK的处理 ...

  2. dex分包方案

    当一个app的功能越来越复杂,代码量越来越多,也许有一天便会突然遇到下列现象: 1. 生成的apk在2.3以前的机器无法安装,提示INSTALL_FAILED_DEXOPT 2. 方法数量过多,编译时 ...

  3. PS 图像调整算法— —渐变映射

    这个调整简单来说就是先建立一张lookup table, 然后以图像的灰度值作为索引,映射得到相应的颜色值.图像的灰度值是由图像本身决定的,但是lookup table 却可以各种各样,所以不同的lo ...

  4. ActiveMQ系列之四:用ActiveMQ构建应用

    Broker:相当于一个ActiveMQ服务器实例 命令行启动参数示例如下: 1:activemq start :使用默认的activemq.xml来启动 2:activemq start xbean ...

  5. 微信android混淆打包减少安装包大小

    首先,感谢微信android团队的分享 微信中的资源混淆工具主要为了混淆资源ID长度(例如将res/drawable/welcome.png混淆为r/s/a.png),同时利用7z深度压缩,大大减少了 ...

  6. ZooKeeper客户端事件串行化处理

    为了提升系统的性能,进一步提高系统的吞吐能力,最近公司很多系统都在进行异步化改造.在异步化改造的过程中,肯定会比以前碰到更多的多线程问题,上周就碰到ZooKeeper客户端异步化过程中的一个死锁问题, ...

  7. HBase开启LZO

    hbase只支持对gzip的压缩,对lzo压缩支持不好.在io成为系统瓶颈的情况下,一般开启lzo压缩会提高系统的吞吐量.但这需要参考具体的应用场景,即是否值得进行压缩.压缩率是否足够等等. 想要hb ...

  8. Bloom filter 2

    1 Bloom filter 计算方法 如需要判断一个元素是不是在一个集合中,我们通常做法是把所有元素保存下来,然后通过比较知道它是不是在集合内,链表.树都是基于这种思路,当集合内元素个数的变大,我们 ...

  9. ARP 协议抓包分析

    ARP(Address Resolution Protocol)- 地址解析分析 ARP 协议是根据IP地址获取物理地址的一个TCP/IP协议. 当PC1 想与 PC2 进行通信时,需要同时知道PC2 ...

  10. [转]CAS原理

    在JDK 5之前Java语言是靠synchronized关键字保证同步的,这会导致有锁(后面的章节还会谈到锁). 锁机制存在以下问题: (1)在多线程竞争下,加锁.释放锁会导致比较多的上下文切换和调度 ...