洛谷 [P1129] [ZJOI2007] 矩阵游戏
这竟然是一道二分图
乍一看,可能是用搜索做,但是这个数据范围,一定会T。
我们观察发现,无论怎样变换,同一行的一定在同一行,同一列的一定还在同一列。所以说,一行只能配一列。这样,我们的目标就是寻找是否存在一种变换方式,使得行数与列数一一对应,且对应数为n。
我们可以把行数和列数作为二分图的两部分,然后跑一个匈牙利
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
using namespace std;
int init(){
int rv=0,fh=1;
char c=getchar();
while(c<'0'||c>'9'){
if(c=='-') fh=-1;
c=getchar();
}
while(c>='0'&&c<='9'){
rv=(rv<<1)+(rv<<3)+c-'0';
c=getchar();
}
return rv*fh;
}
int T,n,g[205][205],match[205];
bool f[205];
bool hungarian(int u){
for(int i=1;i<=g[u][0];i++){
int v=g[u][i];
if(!f[v]){
f[v]=1;
if(!match[v]||hungarian(match[v])){
match[v]=u;
return 1;
}
}
}
return 0;
}
int main(){
T=init();
while(T--){
n=init();
memset(g,0,sizeof(g));
memset(match,0,sizeof(match));
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
int t=init();
if(t) g[i][++g[i][0]]=j;
}
}
int ans=0;
for(int i=1;i<=n;i++){
memset(f,0,sizeof(f));
if(hungarian(i)) ans++;
}
if(ans==n) printf("Yes\n");
else printf("No\n");
}
return 0;
}
洛谷 [P1129] [ZJOI2007] 矩阵游戏的更多相关文章
- 洛谷 P1129 [ZJOI2007]矩阵游戏 解题报告
P1129 [ZJOI2007]矩阵游戏 题目描述 小\(Q\)是一个非常聪明的孩子,除了国际象棋,他还很喜欢玩一个电脑益智游戏――矩阵游戏.矩阵游戏在一个\(N*N\)黑白方阵进行(如同国际象棋一般 ...
- 洛谷P1129 [ZJOI2007]矩阵游戏 题解
题目链接:https://www.luogu.org/problemnew/show/P1129 分析: 这道题不是很好想,但只要想的出来,代码不成问题. 思路1 举几个例子,我们发现, 对于任何数来 ...
- 洛谷P1129 [ZJOI2007] 矩阵游戏
题目传送门 分析:看到这题呢,首先想到的就是搜索,数据范围也不大嘛.但是仔细思考发现这题用搜索很难做,看了大佬们的题解后学到了,这一类题目要用二分图匹配来做.可以知道,如果想要的话,每一个子都可以移动 ...
- BZOJ1059或洛谷1129 [ZJOI2007]矩阵游戏
BZOJ原题链接 洛谷原题链接 通过手算几组例子后,很容易发现,同一列的\(1\)永远在这一列,且这些\(1\)有且仅有一个能产生贡献,行同理. 所以我们可以只考虑交换列,使得每一行都能匹配一个\(1 ...
- 【洛谷P1129】矩阵游戏
题目大意:给定一个 N*N 的矩阵,有些格子是 1,其他格子是 0.现在允许交换若干次行和若干次列,求是否可能使得矩阵的主对角线上所有的数字都是1. 题解:首先发现,交换行和交换列之间是相互独立的.主 ...
- 【bzoj3240 && 洛谷P1397】矩阵游戏[NOI2013](矩阵乘法+卡常)
题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3240 这道题其实有普通快速幂+费马小定理的解法……然而我太弱了,一开始只想到了矩阵乘法的 ...
- 洛谷P1397 [NOI2013]矩阵游戏
矩阵快速幂+费马小定理 矩阵也是可以跑费马小定理的,但是要注意这个: (图是盗来的QAQ) 就是说如果矩阵a[i][i]都是相等的,那么就是mod p 而不是mod p-1了 #include< ...
- 洛谷P1397 [NOI2013]矩阵游戏(十进制矩阵快速幂)
题意 题目链接 Sol 感觉做这题只要对矩阵乘法理解的稍微一点就能做出来对于每一行构造一个矩阵A = a 1 0 b列与列之间的矩阵为B = c 1 0 d最终答案为$A^{n - ...
- Luogu P1129 [ZJOI2007]矩阵游戏
题目意思还是比较直观的,而且这个建模的套路也很明显. 我们首先考虑从主对角线可以转移到哪些状态. 由于每一次操作都不会把同一行(列)的黑色方块分开.因此我们发现: 只要找出\(n\)个黑色棋子,让它们 ...
随机推荐
- dfs学习总结
今天做到了dfs的训练,感觉和bfs有相似之处,接下来用一道题来总结一下方法,可类比bfs. 上题: Description There is a rectangular room, covered ...
- 关于win10系统安装VMware12Pro后,win10系统的 控制面板\网络和 Internet\网络连接\更改适配器选项卡中 没有虚拟网卡VMnet1和VMnet8图标,该如何把他们显示出来呢?
安装VMware12Pro后,PC主机通过命令行:ipconfig/all ,查看发现没有VMnet1和VMnet8. 然后我首先尝试打开VMware12Pro的虚拟网络编辑器: 然后先点击" ...
- SecureCRT连接虚拟机中的Linux系统(Ubuntu)_Linux教程
有道云笔记链接地址: https://note.youdao.com/share/?id=826781e7ca1fd1223f6a43f4dc2c9b5d&type=note#/
- 十二个 ASP.NET Core 例子——配置操作
目录: 简单配置(利用configration 键值读取) 使用选项和配置对象(自定义类绑定配置文件实现读取) IOptionsSnapshot(配置文件更改时也变化) 内存数据放到配置对象中 实体框 ...
- PHP $_SERVER['HTTP_REFERER'] 获取前一页面的 URL 地址
转载:http://www.5idev.com/p-php_server_http_referer.shtml 使用 $_SERVER['HTTP_REFERER'] 将很容易得到链接到当前页面的前一 ...
- jQuery 表单
1.一般输入信息的提示用<span> 属性为text 2.<input>只有设置了 name 属性的表单元素才能在提交表单时传递它们的值. 3.blur 失去焦点 4.$. ...
- spring data jpa 学习笔记
springboot 集成 springData Jpa 1.在pom.xml添加依赖 <!-- SpringData-Jpa依赖--> <dependency <groupI ...
- Linux - ubuntu读取/root/.profile时发现错误:mesg:ttyname fa
启动ubuntu,以root用户登陆,打开命令行终端 输入命令:#vim /root/.profile 找到.profile文件中的mesg n 将其替换成tty -s && mesg ...
- MVVM探索:从ViewModel关闭Window的最佳实践
在WPF里使用MVVM开发的时候,似乎总是不可避免的会遇到这样一个问题:ViewModel在处理完业务之后需要关闭这个Window,这时候要怎么处理? 网上有很多解决方案:有的在ViewModel抛出 ...
- 什么是bgp线路
https://www.douban.com/note/319956581/ BGP(边界网关协议)主要用于互联网AS(自治系统)之间的互联,BGP的最主要功能在于控制路由的传播和选择最好的路由.中国 ...