3551: [ONTAK2010]Peaks加强版

题意:带权图,多组询问与一个点通过边权\(\le lim\)的边连通的点中点权k大值,强制在线


PoPoQQQ大爷题解传送门




说一下感受:

容易发现一定选最小生成树上的边,然后用到了一个神奇的东西

Kruskal重构树

  • 进行Kruskal过程中,每条边用一个点代替,左右儿子分别是连的两个点的当前的父亲

    这样就形成了一棵树,叶子都是原图上的点,其他都是原图上的边
  • 深度越小的点对应的边权值越大
  • 两点路径上的权值不变
  • 这样的话,与一个点通过权值\(\le lim\)的边连通,就是这个点权值\(\le lim\)的父亲对应的子树中的点

    对dfs序建主席树就行了




    实现上我只将原图中的点加入了dfs序




    该死离散化写错了WA了半小时
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
#define lc(x) t[x].l
#define rc(x) t[x].r
const int N=2e5+5, M=5e5+5;
inline int read(){
char c=getchar();int x=0,f=1;
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
return x*f;
} int n, m, Q, val[N], tot, u, lim, k, mp[N];
struct meow{
int u,v,w;
bool operator <(const meow &r) const{return w<r.w;}
}a[M];
namespace ufs{
int fa[N];
int find(int x) {return x==fa[x]?x:fa[x]=find(fa[x]);}
}
struct edge{int v,ne;}e[N<<1];
int cnt, h[N];
inline void ins(int u, int v) {
e[++cnt]=(edge){v, h[u]}; h[u]=cnt;
}
void Kruskal() {
using ufs::fa; using ufs::find;
sort(a+1, a+1+m);
int cnt=0;
for(int i=1; i<=m; i++) {
int u=a[i].u, v=a[i].v, w=a[i].w;
int x=find(u), y=find(v);
if(x==y) continue; val[++tot]=w; //printf("hey %d %d %d %d\n",x,y,tot,val[tot]);
ins(tot, x); ins(tot, y);
fa[x]=fa[y]=fa[tot]=tot;
if(++cnt == n-1) break;
}
} int deep[N], dfc, ver[N], L[N], R[N];
int fa[N][20];
void dfs(int u) { //printf("dfs %d %d\n",u,val[u]);
if(u<=n) ver[++dfc]=u;
L[u]=dfc;
for(int i=1; (1<<i)<=deep[u]; i++)
fa[u][i] = fa[ fa[u][i-1] ][i-1];
for(int i=h[u];i;i=e[i].ne)
if(e[i].v != fa[u][0]) {
fa[e[i].v][0]=u;
deep[e[i].v]=deep[u]+1;
dfs(e[i].v);
}
R[u]=dfc;
} struct ChairTree{
struct meow{int l,r,size;}t[N*30];
int sz, root[N];
void insert(int &x, int l, int r, int p) {
t[++sz]=t[x]; x=sz;
t[x].size++;
if(l==r) return;
int mid=(l+r)>>1;
if(p<=mid) insert(t[x].l, l, mid, p);
else insert(t[x].r, mid+1, r, p);
}
void build() {
for(int i=1; i<=n; i++) root[i]=root[i-1], insert(root[i], 1, *mp, val[ver[i]]);// printf("%d ",ver[i]);puts("");
}
int kth(int x, int y, int k) { //printf("kth %d %d %d\n",x,y,k);
x=root[x]; y=root[y];
int all = t[y].size-t[x].size; //printf("xy %d %d %d\n",x,y,all);
if(k>all) return -1;
k = all-k+1;
int l=1, r=*mp;
while(l!=r) {
int lsize = t[lc(y)].size - t[lc(x)].size, mid=(l+r)>>1;
if(k<=lsize) x=lc(x), y=lc(y), r=mid;
else x=rc(x), y=rc(y), l=mid+1, k-=lsize;
}
return l;
}
}C;
int main() {
freopen("in","r",stdin);
n=read(); m=read(); Q=read(); tot=n;
for(int i=1; i<=n; i++) val[i]=mp[i]=read(), ufs::fa[i]=i;
val[0]=1e9+5;
for(int i=1; i<=m; i++) a[i].u=read(), a[i].v=read(), a[i].w=read();
Kruskal();
dfs(tot);
sort(mp+1, mp+1+n); mp[0]=unique(mp+1, mp+1+n)-mp-1;
for(int i=1; i<=n; i++) val[i] = lower_bound(mp+1, mp+1+mp[0], val[i])-mp;
C.build();
int ans=0;
for(int i=1; i<=Q; i++) {
if(ans==-1) ans=0;
u=read()^ans, lim=read()^ans, k=read()^ans;
//u=read();lim=read();k=read();
for(int i=16; i>=0; i--) if(val[fa[u][i]]<=lim) u=fa[u][i];
ans = C.kth(L[u], R[u], k);
if(ans!=-1) ans=mp[ans];
printf("%d\n",ans);
}
}

BZOJ 3551: [ONTAK2010]Peaks加强版 [Kruskal重构树 dfs序 主席树]的更多相关文章

  1. BZOJ 3551: [ONTAK2010]Peaks加强版 Kruskal重构树+dfs序+主席树+倍增

    建出来 $Kruskal$ 重构树. 将询问点向上跳到深度最小,且合法的节点上. 那么,得益于重构树优美的性质,这个最终跳到的点为根的所有子节点都可以与询问点互达. 对于子树中求点权第 $k$ 大的问 ...

  2. 【bzoj3545/bzoj3551】[ONTAK2010]Peaks/加强版 Kruskal+树上倍增+Dfs序+主席树

    bzoj3545 题目描述 在Bytemountains有N座山峰,每座山峰有他的高度h_i.有些山峰之间有双向道路相连,共M条路径,每条路径有一个困难值,这个值越大表示越难走,现在有Q组询问,每组询 ...

  3. BZOJ.3551.[ONTAK2010]Peaks加强版(Kruskal重构树 主席树)

    题目链接 \(Description\) 有n个座山,其高度为hi.有m条带权双向边连接某些山.多次询问,每次询问从v出发 只经过边权<=x的边 所能到达的山中,第K高的是多少. 强制在线. \ ...

  4. 【BZOJ 3551】[ONTAK2010] Peaks加强版 Kruskal重构树+树上倍增+主席树

    这题真刺激...... I.关于Kruskal重构树,我只能开门了,不过补充一下那玩意还是一棵满二叉树.(看一下内容之前请先进门坐一坐) II.原来只是用树上倍增求Lca,但其实树上倍增是一种方法,L ...

  5. BZOJ3551 ONTAK2010Peaks加强版(kruskal重构树+dfs序+主席树)

    kruskal重构树本质就是给并查集显式建树来替代可持久化并查集.将边按困难度从小到大排序后建出该树,按dfs序建主席树即可.查询时跳到深度最浅的满足在该重要度下已被合并的点,在子树内查询第k大. # ...

  6. 【BZOJ-3545&3551】Peaks&加强版 Kruskal重构树 + 主席树 + DFS序 + 倍增

    3545: [ONTAK2010]Peaks Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1202  Solved: 321[Submit][Sta ...

  7. [BZOJ3551][ONTAK2010]Peaks(加强版)(Kruskal重构树,主席树)

    3551: [ONTAK2010]Peaks加强版 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 2438  Solved: 763[Submit][ ...

  8. bzoj 3551 [ONTAK2010]Peaks加强版(kruskal,主席树,dfs序)

    Description [题目描述]同3545 Input 第一行三个数N,M,Q. 第二行N个数,第i个数为h_i 接下来M行,每行3个数a b c,表示从a到b有一条困难值为c的双向路径. 接下来 ...

  9. BZOJ3551: [ONTAK2010]Peaks加强版【Kruskal重构树】【主席树】

    重要的事情说三遍 不保证图联通 不保证图联通 不保证图联通 那些和我一样认为重构树是点数的童鞋是要GG Description [题目描述]同3545 Input 第一行三个数N,M,Q. 第二行N个 ...

随机推荐

  1. flume1.8 Sources类型介绍(二)

    1 Flume Sources 1.1 Avro Source 监听Avro端口,从Avro client streams接收events.要求属性是粗体字. agent a1例子: ipFilter ...

  2. Spring框架学习笔记(2)——IOC&DI

    IOC:控制反转,创建对象的权利交给Spring,Spring会自动创建对象. DI:依赖注入,操作的对象靠Spring注入,如果不使用Spring,对象的属性值是要靠setter方法来添加的,使用S ...

  3. windows server 2008使用nginx转发API异常解决办法

    公司比较传统,一直使用的JSP做项目,没有遇到过跨域问题. 最近因为公司接到一个微信spa项目,因为考虑到项目需要调用老接口,斗胆选择nginx(1.12.1)做接口转发服务, 开发环境使用的win1 ...

  4. 微信小程序版2048

    最近流行微信"跳一跳"小游戏,我也心血来潮写了一个微信小程序版2048,本篇文章主要分享实现2048的算法以及注意的点,一起来学习吧!(源码地址见文章末尾)   算法 1.生成4* ...

  5. Angular 4+ Http

    HTTP: 使应用能够对远端服务器发起相应的Http调用: 你要知道: HttpModule并不是Angular的核心模块,它是Angualr用来进行Web访问的一种可选方式,并位于一个名叫@angu ...

  6. 无法打开物理文件 操作系统错误 5:拒绝访问 SQL Sever

    今天分离附加数据库,分离出去然后再附加,没有问题.但是一把.mdf文件拷到其它文件夹下就出错,错误如下:    无法打开物理文件 "E:\db\homework.mdf".操作系统 ...

  7. vue中组件之间的相互调用,及通用后台管理系统左侧菜单树的迭代生成

    由于本人近期开始学习使用vue搭建一个后端管理系统的前端项目,在左侧生成菜单树的时候遇到了一些问题.在这里记录下 分析:由于本人设定的菜单可以使多级结构,直接使用vue的v-for 遍历并不是很方便. ...

  8. [one day one question] Vue数组变更不能触发刷新

    问题描述:Vue数组变更不能触发刷新,特别是数组的每个元素都是对象的时候,对象中某个属性的值发生变化,根本无法触发Vue的dom刷新,这怎么破? 解决方案:this.$set(array, index ...

  9. vue 的准备项目架构环境配置

    一.环境搭建 中国镜像 composer config repo.packagist composer https://packagist.phpcomposer.com 命令 composer in ...

  10. 优化 gruop by 语句

    默认情况下,mysql对所有的gruop by col1,col2...的字段进行排序.如果查询包含group by但用户想要避免排序结果的消耗,则可以指定order by null禁止排序. exp ...