首先分布式锁和我们平常讲到的锁原理基本一样,目的就是确保,在多个线程并发时,只有一个线程在同一刻操作这个业务或者说方法、变量。

在一个进程中,也就是一个jvm 或者说应用中,我们很容易去处理控制,在jdk java.util 并发包中已经为我们提供了这些方法去加锁, 比如synchronized 关键字 或者Lock 锁,都可以处理。

但是我们现在的应用程序如果只部署一台服务器,那并发量是很差的,如果同时有上万的请求那么很有可能造成服务器压力过大,而瘫痪。

想想双十一 和 三十晚上十点分支付宝红包等业务场景,自然需要用到多台服务器去同时处理这些业务,那么这些服务可能会有上百台同时处理,

但是请我们大家想一想,如果有100台服务器 要处理分红包的业务,现在假设有1亿的红包,1千万个人分,金额随机,那么这个业务场景下是不是必须确保这1千万个人最后分的红包金额总和等于1亿。

如果处理不好~~每人分到100万,那马云爸爸估计大年初一,就得宣布破产了~~

1,常规锁会造成什么情况?

首先说一下我们为什么要搞集群,简单理解就是,需求量(请求并发量)变大了,一个工人处理能力有限,那就多招一些工人来一起处理。

假设1千万个请求平均分配到100台服务器上,每个服务器 接收10w的请求(这10w个请求并不是在同一秒中来的,可能是在1,2个小时内,可以联想下我们三十晚上开红包,等到10.20开始,有的人立马开了,有的人是不是等到12点了才想起来~)

那这样的话,平均到每一秒上的请求也就不到1千个,这种压力一般的服务器还是可以承受的。

第一个请求到来后,是不是需要在1亿里面给他分一部分钱,金额随机,假设第一个人分到了100,那是不是要在这1亿中减去100块,剩下99999900 块~

第二个用户再来分,金额随机,这次分200块,那是不是就需要在剩下的99999900块中再减去200块,剩下99999700 块。

等到第10w个用户来,一看还有1000w,那这1000w全成他的了。

等于是在每个服务器中去分1亿,也就是10w个用户分了一个亿,最后总计有100个服务器,要分100亿。

如果真这样了,虽说马云爸爸不会破产(据最新统计马云有2300亿人民币),那分红包的开发项目组,以及产品经理,可以GG了~

简化结构图如下:

2,分布式锁怎么去处理?

那么为了解决这个问题,让1000万用户只分1亿,而不是100亿,这个时候分布式锁就派上用处了。

分布式锁可以把整个集群就当作是一个应用一样去处理,那么也就需要这个锁,要独立于每一个服务之外,而不是在服务里面。

假设第一个服务器接收到用户1的请求后,那么这个时候,他就不能只在自己的应用中去判断还有多少钱可以分了,而需要去外部请求专门负责管理这1亿红包的人(服务),问他:哎,我这里要分100块,给我100。

管理红包的妹子(服务)一看,还有1个亿,那好,给你100块,然后剩下99999900块。

第二个请求到来后,被服务器2获取,继续去询问,管理红包的妹子,我这边要分10块,管理红包的妹子先查了下还有99999900,那就说:好,给你10块。那就剩下99999890块

等到第1000w个请求到来后,服务器100拿到请求,继续去询问,管理红包的妹子,你要100,妹子翻了翻白眼,对你说,就剩1块了,爱要不要,那这个时候就只能给你1块了(1块也是钱啊,买根辣条还是可以的)。

这些请求编号1,2不代表执行的先后顺序,正式的场景下,应该是 100台服务器每个服务器持有一个请求去访问负责管理红包的妹子(服务),那在管红包的妹子那里同时会接收到100个请求,这个时候就需要在负责红包的妹子那里加个锁就可以了(抛绣球),你们100个服务器谁拿到锁(抢到绣球),谁就进来和我谈,我给你分,其他人就等着去吧

经过上面的分布式锁的处理后,马云爸爸终于放心了,决定给红包团队每人加一个鸡腿。

简化的结构图如下:

3,分布式锁的实现有哪些?

说到分布式锁的实现,还是有很多的,有数据库方式的,有redis分布式锁,有zookeeper分布式锁等等

我们如果采用redis作为分布式锁,那么上图中负“责红包的妹子(服务)”,就可以替换成redis,请自行脑补。

3.1,为什么redis可以实现分布式锁?

首先redis是单线程的,这里的单线程指的是网络请求模块使用了一个线程(所以不需考虑并发安全性),即一个线程处理所有网络请求,其他模块仍用了多个线程。

在实际的操作中过程大致是这样子的:

服务器1要去访问发红包的妹子,也就是redis,那么他会在redis中通过"setnx key value" 操作设置一个key 进去,value是啥不重要,重要的是要有一个key,也就是一个标记,而且这个key你爱叫啥叫啥,只要所有的服务器设置的key相同就可以。

假设我们设置一个,如下图

那么我们可以看到会返回一个1,那就代表了成功。

如果再来一个请求去设置同样的key,如下图:

这个时候会返回0,那就代表失败了。

那么我们就可以通过这个操作去判断是不是当前可以拿到锁,或者说可以去访问“负责发红包的妹子”,如果返回1,那我就开始去执行后面的逻辑,如果返回0,那就说明已经被人占用了,我就要继续等待。

当服务器1拿到锁之后,进行了业务处理,完成后,还需要释放锁,如下图所示:

删除成功返回1,那么其他的服务器就可以继续重复上面的步骤去设置这个key,以达到获取锁的目的。

当然以上的操作是在redis客户端直接进行的,通过程序调用的话,肯定就不能这么写,比如java 就需要通过jedis 去调用,但是整个处理逻辑基本都是一样的

通过上面的方式,我们好像是解决了分布式锁的问题,但是想想还有没有什么问题呢??

对,问题还是有的,可能会有死锁的问题发生,比如服务器1设置完之后,获取了锁之后,忽然发生了宕机。

那后续的删除key操作就没法执行,这个key会一直在redis中存在,其他服务器每次去检查,都会返回0,他们都会认为有人在使用锁,我需要等。

为了解决这个死锁的问题,我们就就需要给key 设置有效期了。

设置的方式有2种

1,第一种就是在set完key之后,直接设置key的有效期 "expire key timeout" ,为key设置一个超时时间,单位为second,超过这个时间锁会自动释放,避免死锁。

这种方式相当于,把锁持有的有效期,交给了redis去控制。如果时间到了,你还没有给我删除key,那redis就直接给你删了,其他服务器就可以继续去setnx获取锁。

2,第二种方式,就是把删除key权利交给其他的服务器,那这个时候就需要用到value值了,

比如服务器1,设置了value 也就是 timeout 为 当前时间+1 秒 ,这个时候服务器2 通过get 发现时间已经超过系统当前时间了,那就说明服务器1没有释放锁,服务器1可能出问题了,

服务器2就开始执行删除key操作,并且继续执行setnx 操作。

但是这块有一个问题,也就是,不光你服务器2可能会发现服务器1超时了,服务器3也可能会发现,如果刚好,服务器2,setnx操作完成,服务器3就接着删除,是不是服务器3也可以setnx成功了?

那就等于是服务器2和服务器3都拿到锁了,那就问题大了。这个时候怎么办呢?

这个时候需要用到  “GETSET  key value” 命令了。这个命令的意思就是获取当前key的值,并且设置新的值。

假设服务器2发现key过期了,开始调用 getset 命令,然后用获取的时间判断是否过期,如果获取的时间仍然是过期的,那就说明拿到锁了。

如果没有,则说明在服务2执行getset之前,服务器3可能也发现锁过期了,并且在服务器2之前执行了getset操作,重新设置了过期时间。

那么服务器2就需要放弃后续的操作,继续等待服务器3释放锁或者去监测key的有效期是否过期。

这块其实有一个小问题是,服务器3已经修改了有效期,拿到锁之后,服务器2,也修改了有效期,但是没能拿到锁,但是这个有效期的时间已经被在服务器3的基础上有增加一些,但是这种影响其实还是很小的,几乎可以忽略不计。

3.2,为什么zookeeper可以实现分布式锁?

百度百科是这么介绍的:ZooKeeper是一个分布式的,开放源码的分布式应用程序协调服务,是Google的Chubby一个开源的实现,是Hadoop和Hbase的重要组件。

那对于我们初次认识的人,可以理解成ZooKeeper就像是我们的电脑文件系统,我们可以在d盘中创建文件夹a,并且可以继续在文件夹a中创建 文件夹a1,a2。

那我们的文件系统有什么特点??那就是同一个目录下文件名称不能重复,同样ZooKeeper也是这样的。

在ZooKeeper所有的节点,也就是文件夹称作 Znode,而且这个Znode节点是可以存储数据的。

我们可以通过“ create /zkjjj nice” 来创建一个节点,这个命令就表示,在跟目录下创建一个zkjjj的节点,值是nice。同样这里的值,和我在前面说的redis中的一样,没什么意义,你随便给。

另外ZooKeeper可以创建4种类型的节点,分别是:

1,持久性节点

2,持久性顺序节点

3,临时性节点

4,临时性顺序节点

首先说下持久性节点和临时性节点的区别,持久性节点表示只要你创建了这个节点,那不管你ZooKeeper的客户端是否断开连接,ZooKeeper的服务端都会记录这个节点。

临时性节点刚好相反,一旦你ZooKeeper客户端断开了连接,那ZooKeeper服务端就不再保存这个节点。

再说下顺序性节点,顺序性节点是指,在创建节点的时候,ZooKeeper会自动给节点编号比如0000001 ,0000002 这种的。

最后说下,zookeeper有一个监听机制,客户端注册监听它关心的目录节点,当目录节点发生变化(数据改变、被删除、子目录节点增加删除)等,zookeeper会通知客户端。

下面我们继续结合我们上面的分红包场景,描述下在zookeeper中如何加锁。

假设服务器1,创建了一个节点 /zkjjj ,成功了,那服务器1就获取了锁,服务器2再去创建相同的锁,那么他就会失败,这个时候他就就只能监听这个节点的变化。

等到服务器1,处理完业务,删除了节点后,他就会得到通知,然后去创建同样的节点,获取锁处理业务,再删除节点,后续的100台服务器与之类似

注意这里的100台服务器并不是挨个去执行上面的创建节点的操作,而是并发的,当服务器1创建成功,那么剩下的99个就都会注册监听这个节点,等通知,以此类推。

但是大家有没有注意到,这里还是有问题的,还是会有死锁的情况存在,对不对?

当服务器1创建了节点后挂了,没能删除,那其他99台服务器就会一直等通知,那就完蛋了。。。

这个时候呢,就需要用到临时性节点了,我们前面说过了,临时性节点的特点是客户端一旦断开,就会丢失,也就是当服务器1创建了节点后,如果挂了。

那这个节点会自动被删除,这样后续的其他服务器,就可以继续去创建节点,获取锁了。

但是我们可能还需要注意到一点,就是惊群效应:举一个很简单的例子,当你往一群鸽子中间扔一块食物,虽然最终只有一个鸽子抢到食物,但所有鸽子都会被惊动来争夺,没有抢到..

就是当服务器1节点有变化,会通知其余的99个服务器,但是最终只有1个服务器会创建成功,这样98还是需要等待监听,那么为了处理这种情况,就需要用到临时顺序性节点

大致意思就是,之前是所有99个服务器都监听一个节点,现在就是每一个服务器监听自己前面的一个节点。

假设100个服务器同时发来请求,这个时候会在 /zkjjj 节点下创建 100 个临时顺序性节点 /zkjjj/000000001,  /zkjjj/000000002,一直到  /zkjjj/000000100,这个编号就等于是已经给他们设置了获取锁的先后顺序了。

当001节点处理完毕,删除节点后,002收到通知,去获取锁,开始执行,执行完毕,删除节点,通知003~以此类推。

下次我将继续分享分布式事务的一些学习与思考,欢迎关注!

关于分布式锁原理的一些学习与思考-redis分布式锁,zookeeper分布式锁的更多相关文章

  1. es的分布式架构原理能说一下么(es是如何实现分布式的啊)?

    在搜索这块,lucene是最流行的搜索库.几年前业内一般都问,你了解lucene吗?你知道倒排索引的原理吗?现在早已经out了,因为现在很多项目都是直接用基于lucene的分布式搜索引擎--elast ...

  2. ZooKeeper 分布式锁

    在Redis分布式锁一文中, 作者介绍了如何使用Redis开发分布式锁. Redis分布式锁具有轻量高吞吐量的特点,但是一致性保证较弱.我们可以使用Zookeeper开发分布式锁,来满足对高一致性的要 ...

  3. 分布式缓存重建并发冲突和zookeeper分布式锁解决方案

    如果缓存服务在本地的ehcache中都读取不到数据. 这个时候就意味着,需要重新到源头的服务中去拉去数据,拉取到数据之后,赶紧先给nginx的请求返回,同时将数据写入ehcache和redis中 分布 ...

  4. 一般实现分布式锁都有哪些方式?使用redis如何设计分布式锁?使用zk来设计分布式锁可以吗?这两种分布式锁的实现方式哪种效率比较高?

    #(1)redis分布式锁 官方叫做RedLock算法,是redis官方支持的分布式锁算法. 这个分布式锁有3个重要的考量点,互斥(只能有一个客户端获取锁),不能死锁,容错(大部分redis节点创建了 ...

  5. 《从Paxos到ZooKeeper分布式一致性原理与实践》学习笔记

    第一章 分布式架构 1.1 从集中式到分布式 集中式的特点: 部署结构简单(因为基于底层性能卓越的大型主机,不需考虑对服务多个节点的部署,也就不用考虑多个节点之间分布式协调问题) 分布式系统是一个硬件 ...

  6. Zookeeper--0300--java操作Zookeeper,临时节点实现分布式锁原理

    删除Zookeeper的java客户端有  : 1,Zookeeper官方提供的原生API, 2,zkClient,在原生api上进行扩展的开源java客户端 3, 一.Zookeeper原生API ...

  7. AQS学习(一)自旋锁原理介绍(为什么AQS底层使用自旋锁队列?)

    1.什么是自旋锁? 自旋锁作为锁的一种,和互斥锁一样也是为了在并发环境下保护共享资源的一种锁机制.在任意时刻,只有一个执行单元能够获得锁. 互斥锁通常利用操作系统提供的线程阻塞/唤醒机制实现,在争用锁 ...

  8. Redis、Zookeeper实现分布式锁——原理与实践

    Redis与分布式锁的问题已经是老生常谈了,本文尝试总结一些Redis.Zookeeper实现分布式锁的常用方案,并提供一些比较好的实践思路(基于Java).不足之处,欢迎探讨. Redis分布式锁 ...

  9. 利用多写Redis实现分布式锁原理与实现分析(转)

    利用多写Redis实现分布式锁原理与实现分析   一.关于分布式锁 关于分布式锁,可能绝大部分人都会或多或少涉及到. 我举二个例子:场景一:从前端界面发起一笔支付请求,如果前端没有做防重处理,那么可能 ...

随机推荐

  1. Angularjs $http服务的两个request安全问题

    今天为了hybrid app和后端restful服务的安全认证问题,又翻了一下$http的文档,$http服务文档页面两个安全问题是json和XSRF,JSON那个比较好理解,就不补充什么了,说说XS ...

  2. PhpStorm服务激活

    日期 服务地址 状态  2018-03-15  http://idea.singee77.com/  使用中

  3. ES 在聚合结果中进行过滤

    ES查询中,先聚合,在聚合结果中进行过滤 { "size": 0, "aggs": { "terms": { "terms&quo ...

  4. day07

    放完了愚人节的假期后就忘记更新了,这样不好,学习的态度也有点懒散了,需要调整过来,这几天在做一个退款流程,想好了建表.逻辑设计和需求分析,然后就是写具体的代码了,有些东西还是要多学习,不然书到用时方恨 ...

  5. 读《图解HTTP》有感-(确保WEB安全的HTTPS)

    写在前面 该章节分析当前使用的HTTP协议中存在的安全性问题,以及采用HTTPS协议来规避这些可能存在的缺陷 正文 1.HTTP的缺点 1.1.由于HTTP不具备加密功能,所以在通信链路上,报文是以明 ...

  6. 谈论seo思维性对优化中起到决定性的作用

    在<SEO的艺术>又出版之后,SEO艺术更加受到了广大SEOer的关注和热捧,在这本书里面,也有很多的不为人知的技巧分享.SEO的艺术强调的是SEO融入网络营销,融入社会化媒体大潮,然而这 ...

  7. php-msf 源码解读【转】

    php-msf: https://github.com/pinguo/php-msf 百度脑图 - php-msf 源码解读: http://naotu.baidu.com/file/cc7b5a49 ...

  8. Hibernate验证器

    第 4 章 Hibernate验证器  http://hibernate.org/validator/documentation/getting-started/#applying-constrain ...

  9. java基础之抽象类与接口的形式参数和返回值

    抽象类与接口形式参数和返回值问题 1.形参问题 /* 1.形式参数: 基本类型(太简单,不是我今天要讲解的) 引用类型 (1)类名:(匿名对象的时候其实我们已经讲过了) 需要的是该类的对象 (2)抽象 ...

  10. 判断qq号码 规律

    $qqs = array('2343232', "4323254","22222","5123123","23412341234& ...