[JLOI2015]装备购买
题目描述
脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示 (1 <= i <= n; 1 <= j <= m),每个装备需要花费 ci,现在脸哥想买一些装备,但是脸哥很穷,所以总是盘算着怎样才能花尽量少的钱买尽量多的装备。
对于脸哥来说,如果一件装备的属性能用购买的其他装备组合出(也就是说脸哥可以利用手上的这些装备组合出这件装备的效果),那么这件装备就没有买的 必要了。严格的定义是,如果脸哥买了 zi1,.....zip这 p 件装备,那么对于任意待决定的 zh,不存在 b1,....,bp 使得 b1zi1 + ... + bpzip = zh(b 是实数),那么脸哥就会买 zh,否则 zh 对脸哥就是无用的了,自然不必购买。
举个例子,z1 =(1; 2; 3);z2 =(3; 4; 5);zh =(2; 3; 4),b1 =1/2,b2 =1/2,就有 b1z1 + b2z2 = zh,那么如果脸哥买了 z1 和 z2 就不会再买 zh 了。脸哥想要在买下最多数量的装备的情况下花最少的钱,你能帮他算一下吗?
输入输出格式
输入格式:
第一行两个数 n;m。接下来 n 行,每行 m 个数,其中第 i 行描述装备 i 的各项属性值。接下来一行 n 个数,其中 ci 表示购买第 i 件装备的花费。
输出格式:
一行两个数,第一个数表示能够购买的最多装备数量,第二个数表示在购买最多数量的装备的情况下的最小花费
输入输出样例
3 3
1 2 3
3 4 5
2 3 4
1 1 2
2 2
说明
如题目中描述,选择装备 1 装备 2,装备 1 装备 3,装备 2 装备 3 均可,但选择装备 1 和装备 2 的花费最小,为 2。
对于 100% 的数据, 1 <= n;m <= 500; 0 <= aj <= 1000。
线性相关
在向量空间 $V$ 的一组向量 $A$,如果存在不全为零的数 $k1,k2,···,km$ ,使得
$k_{1}a_{1}+k_{2}a_{2}$+...+k_{m}a_{m}=b$
则称向量组A是线性相关的
所以我们考虑维护一个类似于异或线性基的东西:第$i$个线性基表示前$i-1$位都是$0$,第$i$位不是$0$的线性基。一个一个插入,贪心策略同[BJOI 2011]元素。
就是高斯消元,如果有解就说明线性相关
所以每一次插入都在维护高斯矩阵的上三角,判断当前属性是否可解
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
struct Object
{
double b[];
int cost;
}a[];
double eps=1e-;
int n,m,A[],cnt,ans;
bool cmp(Object a,Object b)
{
return a.cost<b.cost;
}
int main()
{int i,j,k;
cin>>n>>m;
for (i=;i<=n;i++)
{
for (j=;j<=m;j++)
scanf("%lf",&a[i].b[j]);
}
for (i=;i<=n;i++)
scanf("%d",&a[i].cost);
sort(a+,a+n+,cmp);
for (i=;i<=n;i++)
{
for (j=;j<=m;j++)
if (fabs(a[i].b[j])>eps)
{
if (!A[j])
{
cnt++;
ans+=a[i].cost;
A[j]=i;
break;
}
else
{
double p=a[i].b[j]/a[A[j]].b[j];
for (k=j;k<=m;k++)
a[i].b[k]-=a[A[j]].b[k]*p ;
}
}
}
cout<<cnt<<' '<<ans;
}
[JLOI2015]装备购买的更多相关文章
- bzoj 4004: [JLOI2015]装备购买 拟阵 && 高消
4004: [JLOI2015]装备购买 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 337 Solved: 139[Submit][Status ...
- BZOJ_4004_[JLOI2015]装备购买_线性基
BZOJ_4004_[JLOI2015]装备购买_线性基 Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) ...
- [JLOI2015]装备购买 (高斯消元)
[JLOI2015]装备购买 \(solution:\) 首先这道题的题面已经非常清晰的告诉我们这就是线性空间高斯消元的一道题(可以用某些装备来表示另一件装备,这已经不能再明显了),只是这道题要求我们 ...
- BZOJ 4004: [JLOI2015]装备购买
4004: [JLOI2015]装备购买 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 1154 Solved: 376[Submit][Statu ...
- bzoj 4004 [JLOI2015]装备购买 拟阵+线性基
[JLOI2015]装备购买 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 1820 Solved: 547[Submit][Status][Dis ...
- 【BZOJ4004】[JLOI2015]装备购买 贪心+高斯消元
[BZOJ4004][JLOI2015]装备购买 Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示 ( ...
- [JLOI2015]装备购买(线性基)
[JLOI2015]装备购买 题目描述 脸哥最近在玩一款神奇的游戏,这个游戏里有 nn 件装备,每件装备有 \(m\) 个属性,用向量 \(\mathbf{z_i}\)=\((a_1, \ldots ...
- 洛谷P3265 [JLOI2015]装备购买 [线性基]
题目传送门 装备购买 格式难调,题面就不放了. 分析: 一句话,有$n$件物品,每件物品有$m$个属性和一个花费值,如果一个装备的属性值可以由其他装备的属性值改变系数后组合得到那就不买,求购买最多装备 ...
- BZOJ4004:[JLOI2015]装备购买——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=4004 https://www.luogu.org/problemnew/show/P3265 脸哥 ...
随机推荐
- 进程与fork()、wait()、exec函数组
进程与fork().wait().exec函数组 内容简介:本文将引入进程的基本概念:着重学习exec函数组.fork().wait()的用法:最后,我们将基于以上知识编写Linux shell作为练 ...
- 2017-2018-1 20155201 《信息安全系统设计基础》 pwd命令的实现
2017-2018-1 20155201 <信息安全系统设计基础> pwd命令的实现 一.对pwd命令的学习 在终端中输入man pwd查看手册中对pwd这一命令的解释: 以绝对路径的方式 ...
- SaaS的那些事儿
前两年... 大一大二期间,不知道软件架构.云服务器.数据库为何物,偶尔听过却从未用过.天天学的写的东西都是一些命令行代码,所幸在学完<数据结构>和<算法导论>后能够独立实 ...
- 第四十六条:for-each循环优先于传统的for循环
for(Elements e : list) { //doSomeThing-- }
- 点开GitHub之后,瑟瑟发抖...的我
我说句实在话啊,GitHub这个网址真的很能勾起人学习的欲望,一进入GitHub的注册页面真的让我这个英语学渣瑟瑟发抖,瞬间立下个flag:好好学习英语..... 我对python的求知欲怎么能被英语 ...
- Python内置函数(10)——float
英文文档: class float([x]) Return a floating point number constructed from a number or string x. If the ...
- python random 模块的用法
Python中的random模块用于生成随机数.下面介绍一下random模块中最常用的几个函数. random.random random.random()用于生成一个0到1的随机符点数: 0 < ...
- python 中 reduce 函数的使用
reduce()函数也是Python内置的一个高阶函数. reduce()函数接收的参数和 map()类似,一个函数 f,一个list,但行为和 map()不同,reduce()传入的函数 f 必须接 ...
- hadoop2.6.0实践:000 虚拟机配置
- Linux实用的网站
ABCDOCKER网站 https://www.abcdocker.com/ 徐亮伟网站 http://www.xuliangwei.com/ 安装centos物理服务 ...