题目描述

脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示 (1 <= i <= n; 1 <= j <= m),每个装备需要花费 ci,现在脸哥想买一些装备,但是脸哥很穷,所以总是盘算着怎样才能花尽量少的钱买尽量多的装备。

对于脸哥来说,如果一件装备的属性能用购买的其他装备组合出(也就是说脸哥可以利用手上的这些装备组合出这件装备的效果),那么这件装备就没有买的 必要了。严格的定义是,如果脸哥买了 zi1,.....zip这 p 件装备,那么对于任意待决定的 zh,不存在 b1,....,bp 使得 b1zi1 + ... + bpzip = zh(b 是实数),那么脸哥就会买 zh,否则 zh 对脸哥就是无用的了,自然不必购买。

举个例子,z1 =(1; 2; 3);z2 =(3; 4; 5);zh =(2; 3; 4),b1 =1/2,b2 =1/2,就有 b1z1 + b2z2 = zh,那么如果脸哥买了 z1 和 z2 就不会再买 zh 了。脸哥想要在买下最多数量的装备的情况下花最少的钱,你能帮他算一下吗?

输入输出格式

输入格式:

第一行两个数 n;m。接下来 n 行,每行 m 个数,其中第 i 行描述装备 i 的各项属性值。接下来一行 n 个数,其中 ci 表示购买第 i 件装备的花费。

输出格式:

一行两个数,第一个数表示能够购买的最多装备数量,第二个数表示在购买最多数量的装备的情况下的最小花费

输入输出样例

输入样例#1:

3 3
1 2 3
3 4 5
2 3 4
1 1 2
输出样例#1:

2 2

说明

如题目中描述,选择装备 1 装备 2,装备 1 装备 3,装备 2 装备 3 均可,但选择装备 1 和装备 2 的花费最小,为 2。

对于 100% 的数据, 1 <= n;m <= 500; 0 <= aj <= 1000。

线性相关

在向量空间 $V$ 的一组向量 $A$,如果存在不全为零的数 $k1,k2,···,km$ ,使得

$k_{1}a_{1}+k_{2}a_{2}$+...+k_{m}a_{m}=b$

则称向量组A是线性相关的

所以我们考虑维护一个类似于异或线性基的东西:第$i$个线性基表示前$i-1$位都是$0$,第$i$位不是$0$的线性基。一个一个插入,贪心策略同[BJOI 2011]元素。

就是高斯消元,如果有解就说明线性相关

所以每一次插入都在维护高斯矩阵的上三角,判断当前属性是否可解

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
struct Object
{
double b[];
int cost;
}a[];
double eps=1e-;
int n,m,A[],cnt,ans;
bool cmp(Object a,Object b)
{
return a.cost<b.cost;
}
int main()
{int i,j,k;
cin>>n>>m;
for (i=;i<=n;i++)
{
for (j=;j<=m;j++)
scanf("%lf",&a[i].b[j]);
}
for (i=;i<=n;i++)
scanf("%d",&a[i].cost);
sort(a+,a+n+,cmp);
for (i=;i<=n;i++)
{
for (j=;j<=m;j++)
if (fabs(a[i].b[j])>eps)
{
if (!A[j])
{
cnt++;
ans+=a[i].cost;
A[j]=i;
break;
}
else
{
double p=a[i].b[j]/a[A[j]].b[j];
for (k=j;k<=m;k++)
a[i].b[k]-=a[A[j]].b[k]*p ;
}
}
}
cout<<cnt<<' '<<ans;
}

[JLOI2015]装备购买的更多相关文章

  1. bzoj 4004: [JLOI2015]装备购买 拟阵 && 高消

    4004: [JLOI2015]装备购买 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 337  Solved: 139[Submit][Status ...

  2. BZOJ_4004_[JLOI2015]装备购买_线性基

    BZOJ_4004_[JLOI2015]装备购买_线性基 Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) ...

  3. [JLOI2015]装备购买 (高斯消元)

    [JLOI2015]装备购买 \(solution:\) 首先这道题的题面已经非常清晰的告诉我们这就是线性空间高斯消元的一道题(可以用某些装备来表示另一件装备,这已经不能再明显了),只是这道题要求我们 ...

  4. BZOJ 4004: [JLOI2015]装备购买

    4004: [JLOI2015]装备购买 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1154  Solved: 376[Submit][Statu ...

  5. bzoj 4004 [JLOI2015]装备购买 拟阵+线性基

    [JLOI2015]装备购买 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1820  Solved: 547[Submit][Status][Dis ...

  6. 【BZOJ4004】[JLOI2015]装备购买 贪心+高斯消元

    [BZOJ4004][JLOI2015]装备购买 Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示 ( ...

  7. [JLOI2015]装备购买(线性基)

    [JLOI2015]装备购买 题目描述 脸哥最近在玩一款神奇的游戏,这个游戏里有 nn 件装备,每件装备有 \(m\) 个属性,用向量 \(\mathbf{z_i}\)=\((a_1, \ldots ...

  8. 洛谷P3265 [JLOI2015]装备购买 [线性基]

    题目传送门 装备购买 格式难调,题面就不放了. 分析: 一句话,有$n$件物品,每件物品有$m$个属性和一个花费值,如果一个装备的属性值可以由其他装备的属性值改变系数后组合得到那就不买,求购买最多装备 ...

  9. BZOJ4004:[JLOI2015]装备购买——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4004 https://www.luogu.org/problemnew/show/P3265 脸哥 ...

随机推荐

  1. Java作业-多线程

    未完成,占位以后补 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结多线程相关内容. 书面作业 本次PTA作业题集多线程 源代码阅读:多线程程序BounceThread 1.1 Ball ...

  2. MySQL 操作详解

    MySQL 操作详解 一.实验简介 本节实验中学习并实践 MySQL 上创建数据库.创建表.查找信息等详细的语法及参数使用方法. 二.创建并使用数据库 1. 创建并选择数据库 使用SHOW语句找出服务 ...

  3. 为label或者textView添加placeHolder

    Tip:使用textView的代理需要在头文件中加入: <UITextViewDelegate> h文件 @interface FeedbackViewController : UIVie ...

  4. Raid5两块硬盘掉线可以恢复数据吗_raid数据恢复案例分享

    本案例中发生故障的存储类型是HP P2000,虚拟化平台为vmware exsi,共有10块硬盘组成raid5(硬盘容量为1t,其中6号盘是热备盘),由于某些故障导致阵列中两块硬盘亮黄灯掉线,硬盘无法 ...

  5. nyoj VF

    VF 时间限制:1000 ms  |  内存限制:65535 KB 难度:2   描述 Vasya is the beginning mathematician. He decided to make ...

  6. 简单介绍 CPU 的工作原理

    1.内部架构 CPU 的根本任务就是执行指令,对计算机来说最终都是一串由 0 和 1 组成的序列.CPU 从逻辑上可以划分成 3 个模块,分别是控制单元.运算单元和存储单元 .其内部架构如下: [1] ...

  7. ajax的原理解析

    一.关于同步与异步的分析: 异步传输是面向字符的传输,它的单位是字符:而同步传输是面向比特的传输,它的单位是桢,它传输的时候要求接受方和发送方的时钟是保持一致的.而ajax就是采用的异步请求方式的. ...

  8. Python-字符串及列表操作-Day2

    1.数据类型 1.1 变量引出数据类型 变量:用来记录状态变量值的变化就是状态的变化,程序运行的本质就是来处理一系列的变化 1.2 五大基本数据类型: 数字 字符串 列表 元组 字典 1.2.1 数字 ...

  9. machine learning 之 logistic regression

    整理自Adrew Ng 的 machine learning课程week3 目录: 二分类问题 模型表示 decision boundary 损失函数 多分类问题 过拟合问题和正则化 什么是过拟合 如 ...

  10. mosquitto安装和测试

    一.安装 1.windows安装 安装完毕,更新安装目录的dll文件 2.linux安装 编译保存用户数据到数据库的插件 安装 3.启动 mosquitto mosquitto mosquitto_p ...