●BZOJ 4559 [JLoi2016]成绩比较(容斥)
题链:
http://www.lydsy.com/JudgeOnline/problem.php?id=4559
题解:
容斥,拉格朗日插值法。
结合网上的另一种方法,以及插值法,可以把本题做到 O(N2)+O(N2+logN),
(本题的 O(N3)以及拉格朗日插值法在本题的用法,本篇目不再赘述。)
定义 f[k]表示至少碾压 k个人的方案数(只考虑分数相对大小关系,不考虑实际分数大小)。
式子的含义是从N-1个人里面选K个人来碾压,然后对于每门科目,
再从没被碾压的人里选一些出来使得B神在本科目的排名为 R。
然后怎样由f[K]得到恰好有K个人被碾压的方案数ANS呢?
套路部分:
容斥系数如下:
f[K] :1
f[K+1] :-C(K+1,K)
f[K+2] :+C(K+2,K)
......
f[k+j] :(-1)^(j)*C(k+j,k)
这些东西加起来就得到 ANS了。
容斥系数怎么推出来的呢? 看看这个题目的解法,一样的套路,一样的味道。
求出了 ANS以后,
如果设 Y[i]表示第i门课程且B神排在第R[i]名时的分数分布方案。
则
最后的答案就是 ANS*Y[1]*Y[2]*Y[3]*...*Y[M]
而这个 Y[i]可以用拉格朗日插值法求出。
代码:
#include<cstdio>
#include<cstring>
#include<iostream>
#define MAXN 105
#define _ %mod
#define filein(x) freopen(#x".in","r",stdin);
#define fileout(x) freopen(#x".out","w",stdout);
using namespace std;
const int mod=1000000007;
int dp[MAXN],U[MAXN],R[MAXN],C[MAXN][MAXN],Y[MAXN],inv[MAXN];
int N,M,K,ANS;
int pow(int a,int b){
int now=1;
while(b){
if(b&1) now=(1ll*now*a)_;
a=(1ll*a*a)_; b>>=1;
}
return now;
}
int Lagrange(int u,int r){
static int lpi[MAXN],rpi[MAXN],p[MAXN],ans,tmp;
lpi[0]=1; rpi[N+2]=1; ans=0;
for(int i=1;i<=N+1;i++){
p[i]=(1ll*p[i-1]+1ll*pow(i,N-r)*pow(u-i,r-1)_)_;
if(i==u) return p[i];
}
for(int i=1;i<=N+1;i++) lpi[i]=1ll*lpi[i-1]*(u-i)_;
for(int i=N+1;i>=1;i--) rpi[i]=1ll*rpi[i+1]*(u-i)_;
for(int i=1;tmp=1,i<=N+1;i++){
tmp=1ll*tmp*lpi[i-1]_*rpi[i+1]_*inv[i-1]_*inv[N+1-i]_*p[i]_;
tmp=(1ll*tmp*((N+1-i)&1?-1:1)+mod)_;
ans=(1ll*ans+tmp)_;
}
return ans;
}
int main()
{
scanf("%d%d%d",&N,&M,&K);
inv[0]=1; inv[1]=1;
for(int i=2;i<=N+1;i++) inv[i]=((-1ll*(mod/i)*inv[mod%i])_+mod)_;
for(int i=1;i<=N+1;i++) inv[i]=1ll*inv[i]*inv[i-1]_;
for(int i=1;i<=M;i++) scanf("%d",&U[i]);
for(int i=1;i<=M;i++) scanf("%d",&R[i]);
for(int i=0;i<=N;i++){
C[i][0]=1;
for(int j=1;j<=i;j++)
C[i][j]=(1ll*C[i-1][j-1]+C[i-1][j])_;
}
for(int i=1;i<=M;i++) Y[i]=Lagrange(U[i],R[i]);
for(int i=N-1;i>=K;i--)
{
dp[i]=C[N-1][i];
for(int j=1;j<=M;j++) dp[i]=1ll*dp[i]*C[N-i-1][N-R[j]-i]_;
ANS=(1ll*ANS+(((i^K)&1)?-1:1)*1ll*dp[i]*C[i][K]_+mod)_;
}
for(int i=1;i<=M;i++) ANS=1ll*ANS*Y[i]_;
printf("%d",(ANS+mod)_);
return 0;
}
●BZOJ 4559 [JLoi2016]成绩比较(容斥)的更多相关文章
- bzoj4559[JLoi2016]成绩比较 容斥+拉格朗日插值法
4559: [JLoi2016]成绩比较 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 261 Solved: 165[Submit][Status ...
- BZOJ.4559.[JLOI2016]成绩比较(DP/容斥 拉格朗日插值)
BZOJ 洛谷 为什么已经9点了...我写了多久... 求方案数,考虑DP... \(f[i][j]\)表示到第\(i\)门课,还有\(j\)人会被碾压的方案数. 那么\[f[i][j]=\sum_{ ...
- BZOJ.4558.[JLOI2016]方(计数 容斥)
BZOJ 洛谷 图基本来自这儿. 看到这种计数问题考虑容斥.\(Ans=\) 没有限制的正方形个数 - 以\(i\)为顶点的正方形个数 + 以\(i,j\)为顶点的正方形个数 - 以\(i,j,k\) ...
- bzoj 4559 [JLoi2016]成绩比较 —— DP+拉格朗日插值
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4559 看了看拉格朗日插值:http://www.cnblogs.com/ECJTUACM-8 ...
- ●BZOJ 4559 [JLoi2016]成绩比较
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4559 题解: 计数dp,拉格朗日插值法.真的是神题啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊 ...
- bzoj 4559 [JLoi2016]成绩比较——拉格朗日插值
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4559 关于拉格朗日插值,可以看这些博客: https://www.cnblogs.com/E ...
- P3270 [JLOI2016]成绩比较 容斥 数论 组合数学 拉格朗日插值
LINK:成绩比较 大体思路不再赘述 这里只说几个我犯错的地方. 拉格朗日插值的时候 明明是n次多项式 我只带了n个值进去 导致一直GG. 拉格朗日插值的时候 由于是从1开始的 所以分母是\((i-1 ...
- [BZOJ 3198] [Sdoi2013] spring 【容斥 + Hash】
题目链接:BZOJ - 3198 题目分析 题目要求求出有多少对泉有恰好 k 个值相等. 我们用容斥来做. 枚举 2^6 种状态,某一位是 1 表示这一位相同,那么假设 1 的个数为 x . 答案就是 ...
- [BZOJ 3129] [Sdoi2013] 方程 【容斥+组合数取模+中国剩余定理】
题目链接:BZOJ - 3129 题目分析 使用隔板法的思想,如果没有任何限制条件,那么方案数就是 C(m - 1, n - 1). 如果有一个限制条件是 xi >= Ai ,那么我们就可以将 ...
随机推荐
- 咬碎STL空间配置器
STL空间配置器 一.开场白: 给我的感觉就是,了解是空间配置器的功能,是那么的明了:在看原理,我还是很开心:接下来是360度大转变: 那么长的变量或者函数命名.那么多的宏.不爽,不过,遇上我这种二货 ...
- CPP 栈 示例
#include<iostream> #include<stdlib.h> using namespace std; typedef struct node { int dat ...
- Linux下Apache服务的查看和启动
cd到/etc/rc.d/init.d/目录,并列出该目录下的所有文件,看看是否有httpd 使用httpd -v查看已经安装的httpd的版本 使用rpm -qa | grep http ...
- bzoj千题计划271:bzoj4869: [六省联考2017]相逢是问候
http://www.lydsy.com/JudgeOnline/problem.php?id=4869 欧拉降幂+线段树,每个数最多降log次,模数就会降为1 #include<cmath&g ...
- nyoj水池数目
水池数目 时间限制:3000 ms | 内存限制:65535 KB 难度:4 描述 南阳理工学院校园里有一些小河和一些湖泊,现在,我们把它们通一看成水池,假设有一张我们学校的某处的地图,这个地 ...
- OpenShift实战(二):OpenShift节点扩容
1.新增节点信息 增加节点如下,请将xxx改为自己的域名 node6.xxx.net Node 192.168.8.90 8G 20G/60G 4C node7.xxx.net Node 192.16 ...
- CentOS7下安装python-pip
一.检查是否已经安装 检查linux有没有安装python-pip包,直接执行:: yum install python-pip 二.安装 pip install 1.没有python-pip包就执行 ...
- java将一个正整数分解质因数。例如:输入90,打印出90=2*3*3*5。
首先我们的算法是:例如 输入的是 90 1.找到90的最小公约数(1除外)是 2 2.然后把公约数 2 输出 3.接着用 90 / 2 = 45 (如果这里是素数,就结束,否则继续找最小公约数) 4. ...
- 使用java 打印日历
package hangshu; /* * 打印从1900年到2.year年的日历 */ import java.util.Scanner; public class Calender { publi ...
- java专业术语
java的(PO,VO,TO,BO,DAO,POJO)解释 PO(persistant object) 持久对象 在o/r映射的时候出现的概念,如果没有o/r映射,没有这个概念存在了.通常对应数据模型 ...