题链:

http://www.lydsy.com/JudgeOnline/problem.php?id=4559

题解:

容斥,拉格朗日插值法。
结合网上的另一种方法,以及插值法,可以把本题做到 O(N2)+O(N2+logN),
(本题的 O(N3)以及拉格朗日插值法在本题的用法,本篇目不再赘述。)
定义 f[k]表示至少碾压 k个人的方案数(只考虑分数相对大小关系,不考虑实际分数大小)。

式子的含义是从N-1个人里面选K个人来碾压,然后对于每门科目,
再从没被碾压的人里选一些出来使得B神在本科目的排名为 R。
然后怎样由f[K]得到恰好有K个人被碾压的方案数ANS呢?
套路部分:
容斥系数如下:
f[K]    :1
f[K+1]    :-C(K+1,K) 
f[K+2]    :+C(K+2,K)
......
f[k+j]    :(-1)^(j)*C(k+j,k)
这些东西加起来就得到 ANS了。
容斥系数怎么推出来的呢? 看看这个题目的解法,一样的套路,一样的味道。
求出了 ANS以后,
如果设 Y[i]表示第i门课程且B神排在第R[i]名时的分数分布方案。

最后的答案就是 ANS*Y[1]*Y[2]*Y[3]*...*Y[M]
而这个 Y[i]可以用拉格朗日插值法求出。

代码:

#include<cstdio>
#include<cstring>
#include<iostream>
#define MAXN 105
#define _ %mod
#define filein(x) freopen(#x".in","r",stdin);
#define fileout(x) freopen(#x".out","w",stdout);
using namespace std;
const int mod=1000000007;
int dp[MAXN],U[MAXN],R[MAXN],C[MAXN][MAXN],Y[MAXN],inv[MAXN];
int N,M,K,ANS;
int pow(int a,int b){
int now=1;
while(b){
if(b&1) now=(1ll*now*a)_;
a=(1ll*a*a)_; b>>=1;
}
return now;
}
int Lagrange(int u,int r){
static int lpi[MAXN],rpi[MAXN],p[MAXN],ans,tmp;
lpi[0]=1; rpi[N+2]=1; ans=0;
for(int i=1;i<=N+1;i++){
p[i]=(1ll*p[i-1]+1ll*pow(i,N-r)*pow(u-i,r-1)_)_;
if(i==u) return p[i];
}
for(int i=1;i<=N+1;i++) lpi[i]=1ll*lpi[i-1]*(u-i)_;
for(int i=N+1;i>=1;i--) rpi[i]=1ll*rpi[i+1]*(u-i)_;
for(int i=1;tmp=1,i<=N+1;i++){
tmp=1ll*tmp*lpi[i-1]_*rpi[i+1]_*inv[i-1]_*inv[N+1-i]_*p[i]_;
tmp=(1ll*tmp*((N+1-i)&1?-1:1)+mod)_;
ans=(1ll*ans+tmp)_;
}
return ans;
}
int main()
{
scanf("%d%d%d",&N,&M,&K);
inv[0]=1; inv[1]=1;
for(int i=2;i<=N+1;i++) inv[i]=((-1ll*(mod/i)*inv[mod%i])_+mod)_;
for(int i=1;i<=N+1;i++) inv[i]=1ll*inv[i]*inv[i-1]_;
for(int i=1;i<=M;i++) scanf("%d",&U[i]);
for(int i=1;i<=M;i++) scanf("%d",&R[i]);
for(int i=0;i<=N;i++){
C[i][0]=1;
for(int j=1;j<=i;j++)
C[i][j]=(1ll*C[i-1][j-1]+C[i-1][j])_;
}
for(int i=1;i<=M;i++) Y[i]=Lagrange(U[i],R[i]);
for(int i=N-1;i>=K;i--)
{
dp[i]=C[N-1][i];
for(int j=1;j<=M;j++) dp[i]=1ll*dp[i]*C[N-i-1][N-R[j]-i]_;
ANS=(1ll*ANS+(((i^K)&1)?-1:1)*1ll*dp[i]*C[i][K]_+mod)_;
}
for(int i=1;i<=M;i++) ANS=1ll*ANS*Y[i]_;
printf("%d",(ANS+mod)_);
return 0;
}

●BZOJ 4559 [JLoi2016]成绩比较(容斥)的更多相关文章

  1. bzoj4559[JLoi2016]成绩比较 容斥+拉格朗日插值法

    4559: [JLoi2016]成绩比较 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 261  Solved: 165[Submit][Status ...

  2. BZOJ.4559.[JLOI2016]成绩比较(DP/容斥 拉格朗日插值)

    BZOJ 洛谷 为什么已经9点了...我写了多久... 求方案数,考虑DP... \(f[i][j]\)表示到第\(i\)门课,还有\(j\)人会被碾压的方案数. 那么\[f[i][j]=\sum_{ ...

  3. BZOJ.4558.[JLOI2016]方(计数 容斥)

    BZOJ 洛谷 图基本来自这儿. 看到这种计数问题考虑容斥.\(Ans=\) 没有限制的正方形个数 - 以\(i\)为顶点的正方形个数 + 以\(i,j\)为顶点的正方形个数 - 以\(i,j,k\) ...

  4. bzoj 4559 [JLoi2016]成绩比较 —— DP+拉格朗日插值

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4559 看了看拉格朗日插值:http://www.cnblogs.com/ECJTUACM-8 ...

  5. ●BZOJ 4559 [JLoi2016]成绩比较

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4559 题解: 计数dp,拉格朗日插值法.真的是神题啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊 ...

  6. bzoj 4559 [JLoi2016]成绩比较——拉格朗日插值

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4559 关于拉格朗日插值,可以看这些博客: https://www.cnblogs.com/E ...

  7. P3270 [JLOI2016]成绩比较 容斥 数论 组合数学 拉格朗日插值

    LINK:成绩比较 大体思路不再赘述 这里只说几个我犯错的地方. 拉格朗日插值的时候 明明是n次多项式 我只带了n个值进去 导致一直GG. 拉格朗日插值的时候 由于是从1开始的 所以分母是\((i-1 ...

  8. [BZOJ 3198] [Sdoi2013] spring 【容斥 + Hash】

    题目链接:BZOJ - 3198 题目分析 题目要求求出有多少对泉有恰好 k 个值相等. 我们用容斥来做. 枚举 2^6 种状态,某一位是 1 表示这一位相同,那么假设 1 的个数为 x . 答案就是 ...

  9. [BZOJ 3129] [Sdoi2013] 方程 【容斥+组合数取模+中国剩余定理】

    题目链接:BZOJ - 3129 题目分析 使用隔板法的思想,如果没有任何限制条件,那么方案数就是 C(m - 1, n - 1). 如果有一个限制条件是 xi >= Ai ,那么我们就可以将 ...

随机推荐

  1. ios中录音功能的实现AudioSession的使用

    这个星期我完成了一个具有基本录音和回放的功能,一开始也不知道从何入手,也查找了很多相关的资料.与此同时,我也学会了很多关于音频方面的东西,这也对后面的录音配置有一定的帮助.其中参照了<iPhon ...

  2. nyoj VF

    VF 时间限制:1000 ms  |  内存限制:65535 KB 难度:2   描述 Vasya is the beginning mathematician. He decided to make ...

  3. Session 和 Cookie 区别

    会话跟踪是Web程序中常用的技术,用来跟踪用户的整个会话.常用的会话跟踪技术是Cookie与Session.==Cookie通过在客户端记录信息确定用户身份,Session通过在服务器端记录信息确定用 ...

  4. 09_Python定义方法_Python编程之路

    有关Python判断与循环的内容我们上几节已经跟大家一起学习了,这一节我们主要针对def 做一个讲解 def 定义一个方法 在项目编程中,我们往往要做很多重复的事,比如一个排序的功能(当然Python ...

  5. python subprocess模块使用总结

    一.subprocess以及常用的封装函数运行python的时候,我们都是在创建并运行一个进程.像Linux进程那样,一个进程可以fork一个子进程,并让这个子进程exec另外一个程序.在Python ...

  6. cookie中存中文

    cookie中存中文 1:想要在cookie中存中文:需要用到URLEncoder(在jdkAPI中有介绍) Cookie cookie = new Cookie("User",U ...

  7. django 配置URLconf和获取值

    django中正确配置url匹配找到视图: 1 在项目下的settings.py中ROOT_URLCONF = "项目名.urls" 表示 前台发来请求会先去项目下的test3/u ...

  8. Java8新特性第3章(Stream API)

    Stream作为Java8的新特性之一,他与Java IO包中的InputStream和OutputStream完全不是一个概念.Java8中的Stream是对集合功能的一种增强,主要用于对集合对象进 ...

  9. 初试valgrind内存调试工具

    虽然GDB调试工具功能强大,但对于平时做题调试的使用并不方便,这里尝试学习使用比较简单的valgrind工具 Valgrind是一个提供程序调试及性能分析的工具集.其包含的工具主要有Memcheck, ...

  10. 详解Class

    Classs是es6提供的类,相当于es5的构造函数. 写法: class Foo { constructor () { // new 的时候会调用该方法,可以通过return改变构造函数的返回值 r ...