[bzoj1558][JSOI2009]等差数列
题目:给定n个数,m个操作,每次给一段区间加一个等差数列或者询问一段区间至少要用多少个等差数列来表示。$n,m\leqslant 10^{5}$
题解:老套路,维护差分数组,修改操作变成了两个单点加和一个区间加。然后我们用线段树维护,合并答案的时候复杂一点,s[0/1][0/1]表示左右端点取不取的答案就行啦。
#include<iostream>
#include<cstdio>
#define MN 100000
using namespace std;
inline int read()
{
int x = , f = ; char ch = getchar();
while(ch < '' || ch > ''){ if(ch == '-') f = -; ch = getchar();}
while(ch >= '' && ch <= ''){x = x * + ch - '';ch = getchar();}
return x * f;
} int n,q,s[MN+];
char op[]; inline void re(int&x,int y){if(y<x) x=y;} struct data
{
int s[],l,r;
data operator + (data y)
{
data c;c.l=l;c.r=y.r;
c.s[]=s[]+y.s[]-(r==y.l);
re(c.s[],s[]+y.s[]);re(c.s[],s[]+y.s[]);
c.s[]=s[]+y.s[]-(r==y.l);
re(c.s[],s[]+y.s[]);re(c.s[],s[]+y.s[]);
c.s[]=s[]+y.s[]-(r==y.l);
re(c.s[],s[]+y.s[]);re(c.s[],s[]+y.s[]);
c.s[]=s[]+y.s[]-(r==y.l);
re(c.s[],s[]+y.s[]);re(c.s[],s[]+y.s[]);
return c;
}
};
struct node{
int l,r,val;data x;
}T[MN*+]; void pushdown(int x)
{
int l=x<<,r=x<<|;
T[l].val+=T[x].val;T[r].val+=T[x].val;
T[l].x.l+=T[x].val;T[l].x.r+=T[x].val;
T[r].x.l+=T[x].val;T[r].x.r+=T[x].val;
T[x].val=;
} void build(int x,int l,int r)
{
if((T[x].l=l)==(T[x].r=r))
{
T[x].x.s[]=;T[x].x.l=T[x].x.r=s[l];
T[x].x.s[]=T[x].x.s[]=T[x].x.s[]=;
return;
}
int mid=l+r>>;
build(x<<,l,mid);build(x<<|,mid+,r);
T[x].x=T[x<<].x+T[x<<|].x;
} data query(int x,int l,int r)
{
//cout<<"query"<<x<<" "<<l<<" "<<r<<" "<<T[x].l<<" "<<T[x].r<<endl;
if(T[x].l==l&&T[x].r==r) return T[x].x;
if(T[x].val) pushdown(x);
int mid=T[x].l+T[x].r>>;
if(r<=mid) return query(x<<,l,r);
else if(l>mid) return query(x<<|,l,r);
else return query(x<<,l,mid)+query(x<<|,mid+,r);
} void modify(int x,int l,int r,int ad)
{
if(T[x].l==l&&T[x].r==r)
{
T[x].val+=ad;T[x].x.l+=ad;T[x].x.r+=ad;
return;
}
if(T[x].val) pushdown(x);
int mid=T[x].l+T[x].r>>;
if(r<=mid) modify(x<<,l,r,ad);
else if(l>mid) modify(x<<|,l,r,ad);
else modify(x<<,l,mid,ad),modify(x<<|,mid+,r,ad);
T[x].x=T[x<<].x+T[x<<|].x;
} int main()
{
n=read();
for(int i=;i<=n;i++) s[i]=read();
for(int i=;i<n;i++) s[i]=s[i+]-s[i];
build(,,n-);
for(q=read();q;q--)
{
scanf("%s",op);int l=read(),r=read();
if(op[]=='B') l==r?puts(""):printf("%d\n",query(,l,r-).s[]);
else
{
int a=read(),b=read();
if(l!=) modify(,l-,l-,a);
if(l!=r) modify(,l,r-,b);
if(r!=n) modify(,r,r,-(a+(r-l)*b));
}
}
return ;
}
[bzoj1558][JSOI2009]等差数列的更多相关文章
- BZOJ1558 [JSOI2009]等差数列 【线段树】
题目链接 BZOJ1558 题解 等差数列,当然是差分一下 差分值相同的连续位置形成等差数列,我们所选的两个等差数列之间可以有一个位置舍弃 例如: \(1 \; 2 \; 3 \; 6 \; 8 \; ...
- 洛谷P4243/bzoj1558 [JSOI2009]等差数列(线段树维护差分+爆炸恶心的合并)
题面 首先感谢这篇题解,是思路来源 看到等差数列,就会想到差分,又有区间加,很容易想到线段树维护差分.再注意点细节,\(A\)操作完美解决 然后就是爆炸恶心的\(B\)操作,之前看一堆题解的解释都不怎 ...
- 【BZOJ1558】等差数列(线段树)
[BZOJ1558]等差数列(线段树) 题面 BZOJ 题解 可以说这道题已经非常毒瘤了 怎么考虑询问操作? 如果直接将一段数分解为等差数列? 太麻烦了.... 考虑相邻的数做差, 这样等差数列变为了 ...
- bzoj 1558: [JSOI2009]等差数列
Description Solution 把原数组变为差分数组,然后剩下的就十分显然了 区间查询用线段树维护 修改操作就是区间加法和两个单点修改 一个等差数列实际上就是 开头一个数字+数值相等的一段 ...
- BZOJ.1558.[JSOI2009]等差数列(线段树 差分)
BZOJ 洛谷 首先可以把原序列\(A_i\)转化成差分序列\(B_i\)去做. 这样对于区间加一个等差数列\((l,r,a_0,d)\),就可以转化为\(B_{l-1}\)+=\(a_0\),\(B ...
- [JSOI2009]等差数列
链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1558 题解: 考虑这么用线段树进行维护,由于他有区间修改等差数列 很容易想到可以用差分数组来维 ...
- JSOI2009 等差数列 和 算术天才⑨与等差数列 和 CH4302 Interval GCD
等差数列 为了检验学生的掌握情况,jyy布置了一道习题:给定一个长度为N(1≤N≤100,000)的数列,初始时第i个数为vi(vi是整数,−100,000≤vi≤100,000),学生们要按照jyy ...
- luogu P4243 [JSOI2009]等差数列 题解
前言: 这题真ex... 强烈谴责在题解里面放毒瘤题链接的屑出题人! 吐 ️ 解析: 这题分成两步走. 首先,既然题目中的修改操作是区间加等差数列,那么就容易想到在差分数组上进行操作. 然后就是相当恶 ...
- 线段树 by yyb
线段树 by yyb Type1 维护特殊信息 1.[洛谷1438]无聊的数列 维护一个数列,两种操作 1.给一段区间加上一个等差数列 2.单点询问值 维护等差数列 不难发现,等差数列可以写成\(ad ...
随机推荐
- Python爬虫基本原理
爬虫基本原理 1. 什么是爬虫 请求网站并提取数据的自动化程序. 2. 爬虫基本流程 发起请求 通过HTTP库向目标站点发起请求,即发送一个Request,请求可以包含额外的headers等信息,等待 ...
- 20道Java面试必考题
系统整理了一下有关Java的面试题,包括基础篇,javaweb篇,框架篇,数据库篇,多线程篇,并发篇,算法篇等等,陆续更新中.其他方面如前端后端等等的面试题也在整理中,都会有的. 注:文末有福利!pd ...
- 新概念英语(1-1)Excuse me!
Excuse me!Whose handbag is it? A:Excuse me! B:Yes? A:Is this your handbag? B:Pardon? A:Is this your ...
- ELK学习总结(1-3)倒排索引
1.倒排索引(反向索引) 一种索引方法,用来存储在全文检索下某个单词在一个/组文档中的存储位置. 常规索引,文档->关键词,费时,得把一个文档全部遍历一遍 倒排索引,关键词->文档,全文搜 ...
- JavaScript实现面向对象
/* js实现面向对象的方法 */ // 1 工厂模型 不推荐 function Person(name , sex , age){ obj = {}; obj.name = name; obj.se ...
- SpringBoot使用log4j
1.添加log4j相关依赖 在pom.xml文件中添加相关依赖: <!--配置log4j--> <dependency> <groupId>org.springfr ...
- tar命令-vi编辑器-磁盘分区及格式化-软链接及硬链接文件
一.tar命令 1.将用户信息数据库文件和组信息数据库文件纵向合并为一个文件/1.txt(覆盖) [root@localhost /] # cat /etc/passwd /etc/group ...
- xpath的一般用法与特殊用法
# xpath的使用 安装lxml from lxml import etree Selector = etree.HTML(网页代码) Selector.xpath(一段神奇的代码) xpath的一 ...
- js常用正则表达式表单验证代码
方法一: var re=/正则表达式/; re.test($("txtid").val()) 方法二: $("txtid").val.match(/正则 ...
- Swagger+Asp.net WebApi实例
第一步新建WebApi项目 文件-新建-项目,弹出以下页面 第二步,新建参数项目 第三步 1.自定义输入参数 2.定义公用输出参数 3.定义输出参数 4.定义返回模型 第四步,在webapi项目中新增 ...