Common Substrings
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 9248   Accepted: 3071

Description

A substring of a string T is defined as:

T(ik)=TiTi+1...Ti+k-1, 1≤ii+k-1≤|T|.

Given two strings AB and one integer K, we define S, a set of triples (ijk):

S = {(ijk) | kKA(ik)=B(jk)}.

You are to give the value of |S| for specific AB and K.

Input

The input file contains several blocks of data. For each block, the first line contains one integer K, followed by two lines containing strings A and B, respectively. The input file is ended byK=0.

1 ≤ |A|, |B| ≤ 105
1 ≤ K ≤ min{|A|, |B|}
Characters of A and B are all Latin letters.

Output

For each case, output an integer |S|.

 
/*
POJ 3415 不小于k的公共子串的个数(思路) 给你两个子串求长度不小于k的公共子串的个数 因为每次枚举一个子串就要和前面所有另一个串的所有已经出现情况取一个最小值
如果每次都把所有的扫描一遍的话很浪费时间,而且是与前面的所有取min,所有用栈保存的话
栈顶的肯定是最大值,所以栈内元素就成单调增的了。 每次只需要更新比当前值大的情况就好了 从头到尾枚举height,如果当前是属于A串,则加上前面所有属于B串的height-k+1.对于B串同理.
两个串之间的公共前缀是它们之间所有的最小值,所以用栈维护一下,保证栈里是单调递增的,
这样对于新增的串只需要处理其中height大于它的一部分即可 hhh-2016-03-15 23:25:42
*/
#include <algorithm>
#include <cmath>
#include <queue>
#include <iostream>
#include <cstring>
#include <map>
#include <cstdio>
#include <vector>
#include <functional>
#define lson (i<<1)
#define rson ((i<<1)|1)
using namespace std;
typedef long long ll;
const int maxn = 200050; int t1[maxn],t2[maxn],c[maxn];
bool cmp(int *r,int a,int b,int l)
{
return r[a]==r[b] &&r[l+a] == r[l+b];
} void get_sa(int str[],int sa[],int Rank[],int height[],int n,int m)
{
n++;
int p,*x=t1,*y=t2;
for(int i = 0; i < m; i++) c[i] = 0;
for(int i = 0; i < n; i++) c[x[i] = str[i]]++;
for(int i = 1; i < m; i++) c[i] += c[i-1];
for(int i = n-1; i>=0; i--) sa[--c[x[i]]] = i;
for(int j = 1; j <= n; j <<= 1)
{
p = 0;
for(int i = n-j; i < n; i++) y[p++] = i;
for(int i = 0; i < n; i++) if(sa[i] >= j) y[p++] = sa[i]-j;
for(int i = 0; i < m; i++) c[i] = 0;
for(int i = 0; i < n; i++) c[x[y[i]]]++ ;
for(int i = 1; i < m; i++) c[i] += c[i-1];
for(int i = n-1; i >= 0; i--) sa[--c[x[y[i]]]] = y[i]; swap(x,y);
p = 1;
x[sa[0]] = 0;
for(int i = 1; i < n; i++)
x[sa[i]] = cmp(y,sa[i-1],sa[i],j)? p-1:p++;
if(p >= n) break;
m = p;
}
int k = 0;
n--;
for(int i = 0; i <= n; i++)
Rank[sa[i]] = i;
for(int i = 0; i < n; i++)
{
if(k) k--;
int j = sa[Rank[i]-1];
while(str[i+k] == str[j+k]) k++;
height[Rank[i]] = k;
}
} int Rank[maxn];
int sa[maxn];
int str[maxn],mark[4],height[maxn];
char s1[maxn],s2[maxn];
ll num[4],ans[maxn]; ll solve(int len,int n,int k)
{
int top = 0;
ll sum = 0;
num[1] = num[2] = 0;
for(int i = 1; i <= n; i++)
{
if(height[i] < k)
top = num[1] = num[2] = 0;
else
{
for(int j = top; ans[j] > height[i]+1-k && j; j--)
{
num[mark[j]] += (height[i]-k+1-ans[j]);
ans[j] = height[i]-k+1;
}
ans[++top] = height[i]-k+1;
if(sa[i-1]<len) mark[top] = 1;
if(sa[i-1]>len) mark[top] = 2;
num[mark[top]] += height[i]-k+1;
if(sa[i] < len) sum += num[2];
if(sa[i] > len) sum += num[1];
}
}
return sum;
} int main()
{
int k;
while(scanf("%d",&k) != EOF && k)
{
scanf("%s",s1);
scanf("%s",s2);
int tot = 0;
int len1 = strlen(s1);
for(int i = 0; s1[i]!='\0'; i++)
str[tot++] = s1[i];
str[tot++] = 1;
for(int i = 0; s2[i]!='\0'; i++)
str[tot++] = s2[i];
str[tot] = 0;
get_sa(str,sa,Rank,height,tot,200);
// for(int i = 2;i <= tot;i++)
// printf("%d ",height[i]);
// printf("\n");
cout << solve(len1,tot,k) <<endl;
}
return 0;
}

  

POJ 3415 不小于k的公共子串的个数的更多相关文章

  1. POJ 3415 Common Substrings(长度不小于K的公共子串的个数+后缀数组+height数组分组思想+单调栈)

    http://poj.org/problem?id=3415 题意:求长度不小于K的公共子串的个数. 思路:好题!!!拉丁字母让我Wa了好久!!单调栈又让我理解了好久!!太弱啊!! 最简单的就是暴力枚 ...

  2. POJ 3415 Common Substrings 【长度不小于 K 的公共子串的个数】

    传送门:http://poj.org/problem?id=3415 题意:给定两个串,求长度不小于 k 的公共子串的个数 解题思路: 常用技巧,通过在中间添加特殊标记符连接两个串,把两个串的问题转换 ...

  3. 【POJ 3415】Common Substrings 长度不小于k的公共子串的个数

    长度不小于k的公共子串的个数,论文里有题解,卡了一上午,因为sum没开long long!!! 没开long long毁一生again--- 以后应该早看POJ里的Discuss啊QAQ #inclu ...

  4. poj 3415 后缀数组 两个字符串中长度不小于 k 的公共子串的个数

    Common Substrings Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 11469   Accepted: 379 ...

  5. Common Substrings POJ - 3415(长度不小于k的公共子串的个数)

    题意: 给定两个字符串A 和 B, 求长度不小于 k 的公共子串的个数(可以相同) 分两部分求和sa[i-1] > len1  sa[i] < len1  和  sa[i-1] < ...

  6. POJ - 3415 Common Substrings(后缀数组求长度不小于 k 的公共子串的个数+单调栈优化)

    Description A substring of a string T is defined as: T( i, k)= TiTi+1... Ti+k-1, 1≤ i≤ i+k-1≤| T|. G ...

  7. POJ-Common Substrings(后缀数组-长度不小于 k 的公共子串的个数)

    题意: 长度不小于 k 的公共子串的个数 分析: 基本思路是计算 A 的所有后缀和 B 的所有后缀之间的最长公共前缀的长度,把最长公共前缀长度不小于 k 的部分全部加起来. 先将两个字符串连起来,中间 ...

  8. 【poj3415-长度不小于k的公共子串个数】后缀数组+单调栈

    这题曾经用sam打过,现在学sa再来做一遍. 基本思路:计算A所有的后缀和B所有后缀之间的最长公共前缀. 分组之后,假设现在是做B的后缀.前面的串能和当前的B后缀产生的公共前缀必定是从前往后单调递增的 ...

  9. POJ 2217 (后缀数组+最长公共子串)

    题目链接: http://poj.org/problem?id=2217 题目大意: 求两个串的最长公共子串,注意子串是连续的,而子序列可以不连续. 解题思路: 后缀数组解法是这类问题的模板解法. 对 ...

随机推荐

  1. C#系统服务安装

    转载 http://blog.csdn.net/vvhesj/article/details/8349615 1.1创建WindowsService项目 导入需要的引用比如System.configu ...

  2. css的内容

    块级元素和行内元素的区别: 1. 行内元素部不能够设置宽度和高度.行内元素的宽度和高度是标签内容的宽度和高度.块级元素可以设置宽度和高度. 2. 块级元素会独占一行.而行内元素却部能够独占一行,只能和 ...

  3. 什么是KMP算法?KMP算法推导

    花了大概3天时间,了解,理解,推理KMP算法,这里做一次总结!希望能给看到的人带来帮助!! 1.什么是KMP算法? 在主串Str中查找模式串Pattern的方法中,有一种方式叫KMP算法 KMP算法是 ...

  4. LeetCode & Q167-Two Sum II - Input array is sorted-Easy

    Array Two Pointers Binary Search Description: Given an array of integers that is already sorted in a ...

  5. Web Uploader初始化隐藏容器失败及点击上传图片时反应较慢的问题

    问题1:在一个页面集成一个或者多个文件上传插件,初始化时有些DOM容器是隐藏的,这时候经常会出现初始化失败的情况,虽然按钮样式改变了,但是点击就是没反应(有时候不经意点了哪个地方,或许会出现文件选择框 ...

  6. git初试

    在gitLab上新建一个项目,creat项目文件之后,进入到项目的路径之后,复制命令git clone ‘git@gitlab.touzila.com:xiacaixiang/gitgitTest1. ...

  7. ehcache.xml 属性大全

    属性大全 name:缓存名称. maxElementsInMemory:缓存最大个数. eternal:对象是否永久有效,一但设置了,timeout将不起作用. timeToIdleSeconds:设 ...

  8. SpringBoot(五):@ConfigurationProperties配置参数绑定

    在springmvc或其他ssh框架中如果我们要实现一个配置参数的加载,需要使用代码实现读取properties文件等操作,或者需要使用其他属性@value(name="username&q ...

  9. jacascript AJAX 学习

    前言:这是笔者学习之后自己的理解与整理.如果有错误或者疑问的地方,请大家指正,我会持续更新! AJAX 是 asynchronous javascript and XML 的简写,就是异步的 java ...

  10. Flask博客开发——登录验证码

    这部分为Flask博客的登录页面加个验证码.使用了PIL模块生成验证码图片,并通过Flask的session机制,进行验证码验证. 1.生成验证码 使用string模块:string.ascii_le ...