The Water Bowls
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 5329   Accepted: 2081

Description

The cows have a line of 20 water bowls from which they drink. The bowls can be either right-side-up (properly oriented to serve refreshing cool water) or upside-down (a position which holds no water). They want all 20 water bowls to be right-side-up and thus use their wide snouts to flip bowls.

Their snouts, though, are so wide that they flip not only one bowl but also the bowls on either side of that bowl (a total of three or -- in the case of either end bowl -- two bowls).

Given the initial state of the bowls (1=undrinkable, 0=drinkable -- it even looks like a bowl), what is the minimum number of bowl flips necessary to turn all the bowls right-side-up?

Input

Line 1: A single line with 20 space-separated integers

Output

Line 1: The minimum number of bowl flips necessary to flip all the bowls right-side-up (i.e., to 0). For the inputs given, it will always be possible to find some combination of flips that will manipulate the bowls to 20 0's.

Sample Input

0 0 1 1 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0

Sample Output

3

Hint

Explanation of the sample:

Flip bowls 4, 9, and 11 to make them all drinkable: 
0 0 1 1 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 [initial state] 
0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 [after flipping bowl 4] 
0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 [after flipping bowl 9] 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [after flipping bowl 11]

题意:

给你一排碗,当翻动其中一个时,它和周围两个都翻转,多变元枚举最小值

/*
poj3185
给你20个碗排成一排,当翻动其中一个时,它和周围两个都翻转 */
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
typedef long double ld; using namespace std;
const int maxn = 40; int equ,var;
int a[maxn][maxn];
int b[maxn][maxn];
int x[maxn];
int free_x[maxn];
int free_num; int Gauss()
{
int max_r,col,k;
free_num = 0;
for(k = 0,col = 0; k < equ && col < var; k++,col++)
{
max_r = k;
for(int i = k+1; i < equ; i++)
{
if(abs(a[i][col]) > abs(a[max_r][col]))
max_r = i;
}
if(a[max_r][col] == 0)
{
k --;
free_x[free_num++] = col;
continue;
}
if(max_r != k)
{
for(int j = col; j < var+1; j++)
swap(a[k][j],a[max_r][j]); }
for(int i = k + 1; i < equ; i++)
{
if(a[i][col] != 0)
{
for(int j = col; j < var+1; j++)
a[i][j] ^= a[k][j];
}
} }
for(int i = k; i < equ; i++)
if(a[i][col] != 0)
return -1;
if(k < var) return var-k; for(int i = var-1; i >= 0; i--)
{
x[i] = a[i][var];
for(int j = i +1; j < var; j++)
x[i] ^= (a[i][j] && x[j]); }
return 0; } int n;
void ini()
{
memset(a,0,sizeof(a));
memset(x,0,sizeof(x));
equ = 20;
var = 20;
for(int i = 0;i < 20;i++)
{
a[i][i] = 1;
if(i > 0) a[i-1][i] = 1;
if(i < 20-1) a[i+1][i]= 1;
}
} int solve()
{
int t = Gauss();
if(t == -1)
{
return t;
}
else if(t == 0)
{
int ans = 0;
for(int i = 0; i < n*n; i++)
ans += x[i];
return ans;
}
else
{
int ans = 0x3f3f3f3f;
int tot = (1 << t);
for(int i = 0; i < tot; i++)
{
int cnt = 0;
for(int j = 0; j < t; j++)
{
if(i & (1 << j))
{
cnt ++;
x[free_x[j]]= 1;
}
else x[free_x[j]]= 0;
} for(int j = var-t-1; j >= 0; j--)
{
int dex;
for(dex = j; dex < var; dex++)
if(a[j][dex])
break;
x[dex] = a[j][var];
for(int l = dex +1; l <var ; l++)
{
if(a[j][l])
x[dex] ^= x[l];
}
cnt += x[dex];
}
ans = min(ans,cnt);
}
return ans;
}
} int main()
{
int tx;
while(scanf("%d",&tx) != EOF)
{
ini();
if(tx == 1)
a[0][20] = 1;
else
a[0][20] = 0;
for(int i= 1; i < 20; i ++)
{
scanf("%d",&tx);
if(tx == 1)
a[i][20] = 1;
else
a[i][20] = 0;
} int t = solve();
printf("%d\n",t);
}
return 0;
}

  

poj3185 高斯消元的更多相关文章

  1. 高斯消元几道入门题总结POJ1222&&POJ1681&&POJ1830&&POJ2065&&POJ3185

    最近在搞高斯消元,反正这些题要么是我击败了它们,要么就是这些题把我给击败了.现在高斯消元专题部分还有很多题,先把几道很简单的入门题总结一下吧. 专题:http://acm.hust.edu.cn/vj ...

  2. POJ 1222 POJ 1830 POJ 1681 POJ 1753 POJ 3185 高斯消元求解一类开关问题

    http://poj.org/problem?id=1222 http://poj.org/problem?id=1830 http://poj.org/problem?id=1681 http:// ...

  3. 【BZOJ-3143】游走 高斯消元 + 概率期望

    3143: [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2264  Solved: 987[Submit][Status] ...

  4. 【BZOJ-3270】博物馆 高斯消元 + 概率期望

    3270: 博物馆 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 292  Solved: 158[Submit][Status][Discuss] ...

  5. *POJ 1222 高斯消元

    EXTENDED LIGHTS OUT Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9612   Accepted: 62 ...

  6. [bzoj1013][JSOI2008][球形空间产生器sphere] (高斯消元)

    Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧 ...

  7. hihoCoder 1196 高斯消元·二

    Description 一个黑白网格,点一次会改变这个以及与其连通的其他方格的颜色,求最少点击次数使得所有全部变成黑色. Sol 高斯消元解异或方程组. 先建立一个方程组. \(x_i\) 表示这个点 ...

  8. BZOJ 2844 albus就是要第一个出场 ——高斯消元 线性基

    [题目分析] 高斯消元求线性基. 题目本身不难,但是两种维护线性基的方法引起了我的思考. void gauss(){ k=n; F(i,1,n){ F(j,i+1,n) if (a[j]>a[i ...

  9. SPOJ HIGH Highways ——Matrix-Tree定理 高斯消元

    [题目分析] Matrix-Tree定理+高斯消元 求矩阵行列式的值,就可以得到生成树的个数. 至于证明,可以去看Vflea King(炸树狂魔)的博客 [代码] #include <cmath ...

随机推荐

  1. PYTHON 词云

    #!/usr/bin/env python # -*- coding:utf-8 -*- import matplotlib.pyplot as plt from wordcloud import W ...

  2. 利用java反射读写csv中的数据

      前一段有个需求需要将从数据库读取到的信息保存到csv文件中,在实现该需求的时候发现资料比较少,经过收集反射和csv相关资料,最终得到了如下程序.  1.在使用java反射读取csv文件数据时,先通 ...

  3. Python-迭代器&生成器&装饰器&软件目录结构规范-Day5

    目录Day-Python-迭代器&生成器 21.生成器 21.1.生成器引入 21.2.生成器作用 31.3.创建生成器的方法 31.4.用函数来实现复杂的生成器 51.5.把函数变成生成器通 ...

  4. docker注意事项

      当你最后投入容器的怀抱,发现它能解决很多问题,而且还具有众多的优点: 第一:它是不可变的 – 操作系统,库版本,配置,文件夹和应用都是一样的.您可以使用通过相同QA测试的镜像,使产品具有相同的表现 ...

  5. Oracle 存储过程简单语法

    一.无参数的存储过程 --创建存储过程create or replace procedure getdate as datetime varchar2(); begin select to_char( ...

  6. 1.7 理解dropout

    Dropout为什么有正则化的作用? 下面来直观理解一下. 上面讲到,dropout每次迭代都会让一部分神经元失活,这样使得神经网络会比原始的神经网络规模变小,因此采用一个较小神经网络好像和使用正则化 ...

  7. java 连接mysql

    目前还沉浸在java自动化测试中不能自拔! 自动化过程中免不了要从数据库取值与期望值比较,目前我项目刚开始就需要用到了. 下面我把操作过程写下来: 我的项目框架是java+maven+testNG,所 ...

  8. maven项目添加db2的jar包

    安装完DB2后,SQLLIB文件夹下的java目录下有对应的jar包,我的SQLLIB文件夹位置在 D:\Program Files\IBM\SQLLIB\java 处. 此目录直接添加到CLASSP ...

  9. springboot集成mybatis(二)

    上篇文章<springboot集成mybatis(一)>介绍了SpringBoot集成MyBatis注解版.本文还是使用上篇中的案例,咱们换个姿势来一遍^_^ 二.MyBatis配置版(X ...

  10. [C#]设计模式-抽象工厂-创建型模式

    介绍了简单工厂与工厂方法之后,现在我们来看一下工厂三兄弟的最后一个 -- 抽象工厂. 那什么是抽象工厂呢? 抽象工厂模式(Abstract Factory Pattern):提供一个创建一系列相关或相 ...