题目描述

设T=(V, E, W) 是一个无圈且连通的无向图(也称为无根树),每条边到有正整数的权,我们称T为树网(treebetwork),其中V,E分别表示结点与边的集合,W表示各边长度的集合,并设T有n个结点。

路径:树网中任何两结点a,b都存在唯一的一条简单路径,用d(a, b)表示以a, b为端点的路径的长度,它是该路径上各边长度之和。我们称d(a, b)为a, b两结点间的距离。

  D(v, P)=min{d(v, u), u为路径P上的结点}。

树网的直径:树网中最长的路径成为树网的直径。对于给定的树网T,直径不一定是唯一的,但可以证明:各直径的中点(不一定恰好是某个结点,可能在某条边的内部)是唯一的,我们称该点为树网的中心。

偏心距ECC(F):树网T中距路径F最远的结点到路径F的距离,即

ECC(F)=max{d(v, F),v∈V}

任务:对于给定的树网T=(V, E, W)和非负整数s,求一个路径F,他是某直径上的一段路径(该路径两端均为树网中的结点),其长度不超过s(可以等于s),使偏心距ECC(F)最小。我们称这个路径为树网T=(V, E, W)的核(Core)。必要时,F可以退化为某个结点。一般来说,在上述定义下,核不一定只有一个,但最小偏心距是唯一的。

下面的图给出了树网的一个实例。图中,A-B与A-C是两条直径,长度均为20。点W是树网的中心,EF边的长度为5。如果指定s=11,则树网的核为路径DEFG(也可以取为路径DEF),偏心距为8。如果指定s=0(或s=1、s=2),则树网的核为结点F,偏心距为12。

输入输出格式

输入格式:

输入文件core.in包含n行:

第1行,两个正整数n和s,中间用一个空格隔开。其中n为树网结点的个数,s为树网的核的长度的上界。设结点编号以此为1,2,……,n。

从第2行到第n行,每行给出3个用空格隔开的正整数,依次表示每一条边的两个端点编号和长度。例如,“2 4 7”表示连接结点2与4的边的长度为7。

输出格式:

输出文件core.out只有一个非负整数,为指定意义下的最小偏心距。

输入输出样例

输入样例#1:

5 2
1 2 5
2 3 2
2 4 4
2 5 3
输出样例#1:

5
输入样例#2:

8 6
1 3 2
2 3 2
3 4 6
4 5 3
4 6 4
4 7 2
7 8 3
输出样例#2:

5

说明

40%的数据满足:5<=n<=15

70%的数据满足:5<=n<=80

100%的数据满足:5<=n<=300,0<=s<=1000。边长度为不超过1000的正整数

题解:

首先求出直径

可以用floyd,也可以SPFA或两次bfs

复杂度分别为n^3,n^2,n,但明显floyd更简单

根据网上多数题解认为:接下来偏心距只要考虑路径与直径两端点的距离

但显然是错的,在洛谷后来的加强数据这些题解是WA的

所以要求出每一个直径上的点到非直径上的点的最长距离

这里用了一个dfs实现

如果用Floyd的话判断i是否在直径就很简单

dist[x][i]+dist[i][y]==dist[x][y]

其实可以O(n^2)做,但没有必要

网上的O(n)算法还不知是否正确

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int ans,dist[][],map[][],n,s,inf,x,y,m[];
bool vis[];
int dfs(int now)
{int i,SS=;
vis[now]=;
for (i=;i<=n;i++)
if (map[now][i]&&map[now][i]!=inf)
{
if (vis[i]==)
{
if (dist[x][i]+dist[i][y]!=dist[x][y])
{
SS=max(SS,map[now][i]+dfs(i));
}
}
}
return SS;
}
int main()
{int i,j,k,u,v,d,maxx,l;
cin>>n>>s;
memset(dist,/,sizeof(dist));
inf=dist[][];
for (i=;i<=n;i++) dist[i][i]=;
for (i=;i<=n-;i++)
{
scanf("%d%d%d",&u,&v,&d);
dist[u][v]=dist[v][u]=d;
map[u][v]=map[v][u]=d;
}
for (k=;k<=n;k++)
{
for (i=;i<=n;i++)
{
for (j=;j<=n;j++)
{
dist[i][j]=min(dist[i][j],dist[i][k]+dist[k][j]);
}
}
}
maxx=;
for (i=;i<=n;i++)
{
for (j=i+;j<=n;j++)
if (dist[i][j]!=inf&&dist[i][j]>maxx)
{
x=i;y=j;maxx=dist[i][j];
}
}
for (i=;i<=n;i++)
if (dist[x][i]+dist[i][y]==dist[x][y])
{
m[i]=dfs(i);
}
ans=2e9;
for (i=;i<=n;i++)
if (dist[x][i]+dist[i][y]==dist[x][y])
{
for (j=;j<=n;j++)
if (dist[x][j]+dist[j][y]==dist[x][y])
{int tmp=;
for (l=;l<=n;l++)
if (dist[i][l]+dist[l][j]==dist[i][j])
tmp=max(tmp,m[l]);
if (dist[i][j]<=s)
{
ans=min(ans,max(tmp,max(min(dist[x][i],dist[x][j]),min(dist[i][y],dist[j][y]))));
}
}
}
cout<<ans;
}

NOIP 2007树网的核的更多相关文章

  1. [NOIP 2007] 树网的核

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=1999 [算法] 树的直径 + 单调队列 [代码] #include<bits/ ...

  2. 树网的核 2007年NOIP全国联赛提高组(floyed)

    树网的核 2007年NOIP全国联赛提高组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond     题目描述 Description [问题描述]设 T= ...

  3. noip2007 树网的核

    P1099 树网的核 112通过 221提交 题目提供者该用户不存在 标签动态规划树形结构2007NOIp提高组 难度提高+/省选- 提交该题 讨论 题解 记录   题目描述 设T=(V, E, W) ...

  4. 洛谷 P1099 树网的核

    P1099 树网的核 题目描述 设T=(V, E, W) 是一个无圈且连通的无向图(也称为无根树),每条边到有正整数的权,我们称T为树网(treebetwork),其中V,E分别表示结点与边的集合,W ...

  5. [NOIP2007] 提高组 洛谷P1099 树网的核

    题目描述 设T=(V, E, W) 是一个无圈且连通的无向图(也称为无根树),每条边到有正整数的权,我们称T为树网(treebetwork),其中V,E分别表示结点与边的集合,W表示各边长度的集合,并 ...

  6. 洛谷1099 [NOIP2007] 树网的核

    链接https://www.luogu.org/problemnew/show/P1099 题目描述 设T=(V,E,W)是一个无圈且连通的无向图(也称为无根树),每条边到有正整数的权,我们称TTT为 ...

  7. [bzoj1999]树网的核

    从下午坑到网上..noip的数据太弱,若干的地方写挂结果还随便过= = 最坑的就是网上有些题解没考虑周全... 第一步是找直径,用两次bfs(或者dfs,Linux下系统栈挺大的..)解决.找出其中一 ...

  8. BZOJ1999或洛谷1099&BZOJ2282或洛谷2491 树网的核&[SDOI2011]消防

    一道树的直径 树网的核 BZOJ原题链接 树网的核 洛谷原题链接 消防 BZOJ原题链接 消防 洛谷原题链接 一份代码四倍经验,爽 显然要先随便找一条直径,然后直接枚举核的两个端点,对每一次枚举的核遍 ...

  9. BZOJ1999 树网的核[数据加强版]

    1999: [Noip2007]Core树网的核 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1214  Solved: 336[Submit][St ...

随机推荐

  1. 201621123040 《Java程序设计》第1周学习总结

    1.本周学习总结 关键词 JAVA概述 HelloWorld JDK JRE JVM JAVA基础语法 相关联系 通过一周的学习,我对JAVA有了初步的了解,JAVA是一种优秀的跨平台编写代码的应用平 ...

  2. C语言--第三周作业

    一.PTA作业中4个题目 1.7-9 A乘以B 要求:输入的两个整数:A是你学号前两位数字,B是你学号后两位数字 a.代码 #include <stdio.h> int main () { ...

  3. PTA題目的處理(二)

    題目7-1 計算分段函數[1] 1.實驗代碼 #include <stdio.h> int main() { float x,y; scanf("%f",&x) ...

  4. 201621123057 《Java程序设计》第14周学习总结

    1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结与数据库相关内容. 2. 使用数据库技术改造你的系统 2.1 简述如何使用数据库技术改造你的系统.要建立什么表?截图你的表设计. 答 ...

  5. io多路复用(三)

    #!/usr/bin/env python # -*- coding:utf-8 -*- import socket sk1 = socket.socket() sk1.bind(('127.0.0. ...

  6. Python 3.* print 出现SyntaxError: invalid syntax

    很简单,不知道为啥,据说是3.0以后的print都改为了print(); 例如 a=1 print a 上边出错 输入 a=1 print(a) 就正确了

  7. android批量打包

    http://blog.csdn.net/johnny901114/article/details/48714849

  8. Web前端性能分析

    Web前端性能通常上代表着一个完全意义上的用户响应时间,包含从开始解析HTML文件到最后渲染完成开始的整个过程,但不包括在输入url之后与服务器的交互阶段.下面是整个过程的各个步骤: 开始解析html ...

  9. 使用PostMan进行API自动化测试

    最近在进行一个老项目的升级,第一步是先将node版本从4.x升级到8.x,担心升级会出现问题,所以需要将服务的接口进行验证:如果手动输入各种URL,人肉check,一个两个还行,整个服务..大几十个接 ...

  10. JAVA_SE基础——56.包的创建

    接下来我来给大家讲下--包 , 先看一段代码 class Demo1{ public static void main(String[] args) { System.out.println(&quo ...