代码来自:

http://blog.csdn.net/v_JULY_v

算法思想:

// Quick_select.cpp : 定义控制台应用程序的入口点。
// #include "stdafx.h"
#include <iostream>
#include <time.h> using namespace std; const int num_array = 13;
const int num_med_array = num_array/5 + 1; int array[num_array];
int midian_array[num_med_array]; /*
//插入排序算法伪代码
INSERTION-SORT(A) cost times
1 for j ← 2 to length[A] c1 n
2 do key ← A[j] c2 n - 1
3 Insert A[j] into the sorted sequence A[1 ‥ j - 1]. 0...n - 1
4 i ← j - 1 c4 n - 1
5 while i > 0 and A[i] > key c5
6 do A[i + 1] ← A[i] c6
7 i ← i - 1 c7
8 A[i + 1] ← key c8 n - 1
*/ void insert_sort(int array[], int left, int loop_times)
{//这块的插入排序感觉有点问题,第一个数字没有排啊
for (int j = left; j < left+loop_times; j++)
{
int key = array[j];
int i = j - 1; while (i > left && array[i] > key)
{
array[i+1] = array[i];
i--;
} array[i+1] = key;
}
} void insertion_sort(int array[],int first,int last)
{
int i,j;
int temp;
for(i = first + 1 ;i<=last;i++)
{
temp = array[i];
j=i-1;
//与已排序的数逐一比较,大于temp时,该数移后
while((j>=0)&&(array[j]>temp))
{
array[j+1]=array[j];
j--;
}
//存在大于temp的数
if(j!=i-1)
{array[j+1]=temp;}
} } int find_median(int array[], int left, int right)
{
if (left == right)
return array[left];int index;
for (index = left; index < right - 5; index += 5)
{
//insert_sort(array, index, 4);
insertion_sort(array,index,4);
int num = index - left;
midian_array[num / 5] = array[index + 2];
}
// 处理剩余元素
int remain_num = right - index + 1;
if (remain_num > 0)
{
//insert_sort(array, index, remain_num - 1);
insertion_sort(array,index,remain_num - 1);
int num = index - left;
midian_array[num / 5] = array[index + remain_num / 2];
}
int elem_aux_array = (right - left) / 5 - 1;
if ((right - left) % 5 != 0)
elem_aux_array++;
// 如果剩余一个元素返回,否则继续递归
if (elem_aux_array == 0)
return midian_array[0];
else
return find_median(midian_array, 0, elem_aux_array);
} // 寻找中位数的所在位置
int find_index(int array[], int left, int right, int median)
{
for (int i = left; i <= right; i++)
{
if (array[i] == median)
return i;
}
return -1;
} int q_select(int array[], int left, int right, int k)
{
// 寻找中位数的中位数
int median = find_median(array, left, right);
// 将中位数的中位数与最右元素交换
int index = find_index(array, left, right, median);
swap(array[index], array[right]);
int pivot = array[right];
// 申请两个移动指针并初始化
int i = left;
int j = right - 1;
// 根据枢纽元素的值对数组进行一次划分
while (true)
{
while(array[i] < pivot)
i++;
while(array[j] > pivot)
j--;
if (i < j)
swap(array[i], array[j]);
else
break;
}
swap(array[i], array[right]);
/* 对三种情况进行处理:(m = i - left + 1)
1、如果m=k,即返回的主元即为我们要找的第k 小的元素,那么直接返回主元a[i]即可;
2、如果m>k,那么接下来要到低区间A[0....m-1]中寻找,丢掉高区间;
3、如果m<k,那么接下来要到高区间A[m+1...n-1]中寻找,丢掉低区间。
*/
int m = i - left + 1;
if (m == k)
return array[i];
else if(m > k)
//上条语句相当于if( (i-left+1) >k),即if( (i-left) > k-1 ),于此就与2.2 节里的
//代码实现一、二相对应起来了。
return q_select(array, left, i - 1, k);
else
return q_select(array, i + 1, right, k - m);
} int _tmain(int argc, _TCHAR* argv[])
{
//srand(unsigned(time(NULL)));
//for (int j = 0; j < num_array; j++)
int a[4] = {13,26,9,100};
insert_sort(a,0,3); //insertion_sort(a,0,3); cout<<a[0]<<a[1]<<a[2]<<a[3]<<endl; //array[j] = rand();
int array[num_array]={0,45,78,55,47,4,1,2,7,8,96,36,45};
// 寻找第k 最小数
int k = 13;
int i = q_select(array, 0, num_array - 1, k);
cout << i << endl; getchar();
return 0;
}

【编程练习】快速select算法的实现的更多相关文章

  1. 快速select算法的实现

    代码来自: http://blog.csdn.net/v_JULY_v 算法思想: // Quick_select.cpp : 定义控制台应用程序的入口点. // #include "std ...

  2. Bug2算法的实现(RobotBASIC环境中仿真)

    移动机器人智能的一个重要标志就是自主导航,而实现机器人自主导航有个基本要求--避障.之前简单介绍过Bug避障算法,但仅仅了解大致理论而不亲自动手实现一遍很难有深刻的印象,只能说似懂非懂.我不是天才,不 ...

  3. SSE图像算法优化系列十三:超高速BoxBlur算法的实现和优化(Opencv的速度的五倍)

    在SSE图像算法优化系列五:超高速指数模糊算法的实现和优化(10000*10000在100ms左右实现) 一文中,我曾经说过优化后的ExpBlur比BoxBlur还要快,那个时候我比较的BoxBlur ...

  4. 详细MATLAB 中BP神经网络算法的实现

    MATLAB 中BP神经网络算法的实现 BP神经网络算法提供了一种普遍并且实用的方法从样例中学习值为实数.离散值或者向量的函数,这里就简单介绍一下如何用MATLAB编程实现该算法. 具体步骤   这里 ...

  5. C++基础代码--20余种数据结构和算法的实现

    C++基础代码--20余种数据结构和算法的实现 过年了,闲来无事,翻阅起以前写的代码,无意间找到了大学时写的一套C++工具集,主要是关于数据结构和算法.以及语言层面的工具类.过去好几年了,现在几乎已经 ...

  6. Python八大算法的实现,插入排序、希尔排序、冒泡排序、快速排序、直接选择排序、堆排序、归并排序、基数排序。

    Python八大算法的实现,插入排序.希尔排序.冒泡排序.快速排序.直接选择排序.堆排序.归并排序.基数排序. 1.插入排序 描述 插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得 ...

  7. 排序算法的实现之Javascript(常用)

    排序算法的实现之Javascript 话不多说,直接代码. 1.冒泡排序 1.依次比较相邻的两个数,如果前一个比后一个大,则交换两者的位置,否则位置不变 2.按照第一步的方法重复操作前length-1 ...

  8. Alink漫谈(六) : TF-IDF算法的实现

    Alink漫谈(六) : TF-IDF算法的实现 目录 Alink漫谈(六) : TF-IDF算法的实现 0x00 摘要 0x01 TF-IDF 1.1 原理 1.2 计算方法 0x02 Alink示 ...

  9. 万字长文,以代码的思想去详细讲解yolov3算法的实现原理和训练过程,Visdrone数据集实战训练

    以代码的思想去详细讲解yolov3算法的实现原理和训练过程,并教使用visdrone2019数据集和自己制作数据集两种方式去训练自己的pytorch搭建的yolov3模型,吐血整理万字长文,纯属干货 ...

随机推荐

  1. bmp格式图像的读写函数(对一个开源代码的封装)

    在网上看到一段读写bmp格式图像的代码,本文对这段代码分成两个函数封装起来方便使用,一个函数是读取bmp格式的图像,一个是向指定文件写入bmp格式的图像. 前提 我们不需要知道这段代码是如何读取bmp ...

  2. T-SQL动态查询(3)——静态SQL

    接上文:T-SQL动态查询(2)--关键字查询   本文讲述关于静态SQL的一些知识和基础技巧. 简介: 什么是静态SQL?静态SQL是和动态SQL相对而言的,其实我们没必要过于纠结精确定义,只要大概 ...

  3. SQL Server 索引维护(1)——如何获取索引使用情况

    前言: 在前面一文中,已经提到了三类常见的索引问题,那么问题来了,当系统出现这些问题时,该如何应对? 简单而言,需要分析现有系统的行为,然后针对性地对索引进行处理: 对于索引不足的情况:检查缺少索引的 ...

  4. Dynamics CRM2013/2015 检索实体属性的两种方式

    昨天有朋友问起如何查询一个字段属性是否存在于某个实体中,一般这个问题我们会采取最直观的查询方式即MetadataBrowser,该工具是一个zip解决方案包在SDK中的如下目录内"\SDK\ ...

  5. 会声会影小成果分享(那段青春岁月)——校学习部宣传视频制作&生日祝福

    大二的时候在校学习部当副部长,没有给干事们带去好的工作经验和管理方法,我净在折腾新媒体方面的东西,很惭愧的说,那时候申请了一个微信的公众号(HGXXB1314),我那时候以为自己很叼,最后是发现自己装 ...

  6. Java基础--Java---IO流------GUI(布局)、Frame、事件监听机制、窗体事件、Action事件、鼠标事件、对话框Dialog、键盘事件、菜单

     * 创建图形化界面  * 1.创建frame窗体  * 2.对窗体进行基本设置  *   比如大小.位置.布局  * 3.定义组件  * 4.将组件通过窗体的add方法添加到窗体  * 5.让窗体显 ...

  7. Ext JS 6开发实例(三) :主界面设计

    在上文中,已经将CMD创建的应用程序导入到项目里了,而且也看到默认的主界面了,今天的主要工作就是修改这个主界面,以符合项目的需要.除了设计主界面,还有一些其他的东西需要配置一下. 添加本地化包 打开a ...

  8. 自定义android 4.0以上的对话框风格

    做个笔记,这里是Dialog的风格,如果是用AlertDialog创建的,不能直接用.在styles.xml的写法: <style name="DialogWindowTitle&qu ...

  9. 基于表单数据的封装,泛型,反射以及使用BeanUtils进行处理

    在Java Web开发过程中,会遇到很多的表单数据的提交和对表单数据的处理.而每次都需要对这些数据的字段进行一个一个的处理就显得尤为繁琐,在Java语言中,面向对象的存在目的便是为了消除重复代码,减少 ...

  10. 03 RadioButton 单选按钮

    >概念:从多个互斥选项中选择一个  如果是选项全部展开  RadioButton  不是展开的Spinner(下拉列表)     >属性: android:checked="tr ...