ConcurrentHashMap

在多线程环境下,使用HashMap进行put操作时存在丢失数据的情况,为了避免这种bug的隐患,强烈建议使用ConcurrentHashMap代替HashMap,为了对ConcurrentHashMap有更深入的了解,本文将对ConcurrentHashMap1.7和1.8的不同实现进行分析。

1.7实现

数据结构

jdk1.7中采用Segment + HashEntry的方式进行实现,结构如下:

ConcurrentHashMap初始化时,计算出Segment数组的大小ssize和每个SegmentHashEntry数组的大小cap,并初始化Segment数组的第一个元素;其中ssize大小为2的幂次方,默认为16,cap大小也是2的幂次方,最小值为2,最终结果根据根据初始化容量initialCapacity进行计算,计算过程如下:

1
2
3
4
5
if (c * ssize < initialCapacity)
    ++c;
int cap = MIN_SEGMENT_TABLE_CAPACITY;
while (cap < c)
    cap <<= 1;

其中Segment在实现上继承了ReentrantLock,这样就自带了锁的功能。

put实现

当执行put方法插入数据时,根据key的hash值,在Segment数组中找到相应的位置,如果相应位置的Segment还未初始化,则通过CAS进行赋值,接着执行Segment对象的put方法通过加锁机制插入数据,实现如下:

场景:线程A和线程B同时执行相同Segment对象的put方法

1、线程A执行tryLock()方法成功获取锁,则把HashEntry对象插入到相应的位置;
2、线程B获取锁失败,则执行scanAndLockForPut()方法,在scanAndLockForPut方法中,会通过重复执行tryLock()方法尝试获取锁,在多处理器环境下,重复次数为64,单处理器重复次数为1,当执行tryLock()方法的次数超过上限时,则执行lock()方法挂起线程B;
3、当线程A执行完插入操作时,会通过unlock()方法释放锁,接着唤醒线程B继续执行;

size实现

因为ConcurrentHashMap是可以并发插入数据的,所以在准确计算元素时存在一定的难度,一般的思路是统计每个Segment对象中的元素个数,然后进行累加,但是这种方式计算出来的结果并不一样的准确的,因为在计算后面几个Segment的元素个数时,已经计算过的Segment同时可能有数据的插入或则删除,在1.7的实现中,采用了如下方式:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
try {
    for (;;) {
        if (retries++ == RETRIES_BEFORE_LOCK) {
            for (int j = 0; j < segments.length; ++j)
                ensureSegment(j).lock(); // force creation
        }
        sum = 0L;
        size = 0;
        overflow = false;
        for (int j = 0; j < segments.length; ++j) {
            Segment<K,V> seg = segmentAt(segments, j);
            if (seg != null) {
                sum += seg.modCount;
                int c = seg.count;
                if (c < 0 || (size += c) < 0)
                    overflow = true;
            }
        }
        if (sum == last)
            break;
        last = sum;
    }
} finally {
    if (retries > RETRIES_BEFORE_LOCK) {
        for (int j = 0; j < segments.length; ++j)
            segmentAt(segments, j).unlock();
    }
}

先采用不加锁的方式,连续计算元素的个数,最多计算3次:
1、如果前后两次计算结果相同,则说明计算出来的元素个数是准确的;
2、如果前后两次计算结果都不同,则给每个Segment进行加锁,再计算一次元素的个数;

1.8实现

数据结构

1.8中放弃了Segment臃肿的设计,取而代之的是采用Node + CAS + Synchronized来保证并发安全进行实现,结构如下:

只有在执行第一次put方法时才会调用initTable()初始化Node数组,实现如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
private final Node<K,V>[] initTable() {
    Node<K,V>[] tab; int sc;
    while ((tab = table) == null || tab.length == 0) {
        if ((sc = sizeCtl) < 0)
            Thread.yield(); // lost initialization race; just spin
        else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
            try {
                if ((tab = table) == null || tab.length == 0) {
                    int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
                    @SuppressWarnings("unchecked")
                    Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
                    table = tab = nt;
                    sc = n - (n >>> 2);
                }
            } finally {
                sizeCtl = sc;
            }
            break;
        }
    }
    return tab;
}

put实现

当执行put方法插入数据时,根据key的hash值,在Node数组中找到相应的位置,实现如下:

1、如果相应位置的Node还未初始化,则通过CAS插入相应的数据;

1
2
3
4
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
    if (casTabAt(tab, i, null, new Node<K,V>(hash, key, value, null)))
        break;                   // no lock when adding to empty bin
}

2、如果相应位置的Node不为空,且当前该节点不处于移动状态,则对该节点加synchronized锁,如果该节点的hash不小于0,则遍历链表更新节点或插入新节点;

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
if (fh >= 0) {
    binCount = 1;
    for (Node<K,V> e = f;; ++binCount) {
        K ek;
        if (e.hash == hash &&
            ((ek = e.key) == key ||
             (ek != null && key.equals(ek)))) {
            oldVal = e.val;
            if (!onlyIfAbsent)
                e.val = value;
            break;
        }
        Node<K,V> pred = e;
        if ((e = e.next) == null) {
            pred.next = new Node<K,V>(hash, key, value, null);
            break;
        }
    }
}

3、如果该节点是TreeBin类型的节点,说明是红黑树结构,则通过putTreeVal方法往红黑树中插入节点;

1
2
3
4
5
6
7
8
9
else if (f instanceof TreeBin) {
    Node<K,V> p;
    binCount = 2;
    if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key, value)) != null) {
        oldVal = p.val;
        if (!onlyIfAbsent)
            p.val = value;
    }
}

4、如果binCount不为0,说明put操作对数据产生了影响,如果当前链表的个数达到8个,则通过treeifyBin方法转化为红黑树,如果oldVal不为空,说明是一次更新操作,没有对元素个数产生影响,则直接返回旧值;

1
2
3
4
5
6
7
if (binCount != 0) {
    if (binCount >= TREEIFY_THRESHOLD)
        treeifyBin(tab, i);
    if (oldVal != null)
        return oldVal;
    break;
}

5、如果插入的是一个新节点,则执行addCount()方法尝试更新元素个数baseCount

size实现

1.8中使用一个volatile类型的变量baseCount记录元素的个数,当插入新数据或则删除数据时,会通过addCount()方法更新baseCount,实现如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
if ((as = counterCells) != null ||
    !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
    CounterCell a; long v; int m;
    boolean uncontended = true;
    if (as == null || (m = as.length - 1) < 0 ||
        (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
        !(uncontended =
          U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
        fullAddCount(x, uncontended);
        return;
    }
    if (check <= 1)
        return;
    s = sumCount();
}

1、初始化时counterCells为空,在并发量很高时,如果存在两个线程同时执行CAS修改baseCount值,则失败的线程会继续执行方法体中的逻辑,使用CounterCell记录元素个数的变化;

2、如果CounterCell数组counterCells为空,调用fullAddCount()方法进行初始化,并插入对应的记录数,通过CAS设置cellsBusy字段,只有设置成功的线程才能初始化CounterCell数组,实现如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
else if (cellsBusy == 0 && counterCells == as &&
         U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
    boolean init = false;
    try {                           // Initialize table
        if (counterCells == as) {
            CounterCell[] rs = new CounterCell[2];
            rs[h & 1] = new CounterCell(x);
            counterCells = rs;
            init = true;
        }
    } finally {
        cellsBusy = 0;
    }
    if (init)
        break;
}

3、如果通过CAS设置cellsBusy字段失败的话,则继续尝试通过CAS修改baseCount字段,如果修改baseCount字段成功的话,就退出循环,否则继续循环插入CounterCell对象;

1
2
else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
    break;

所以在1.8中的size实现比1.7简单多,因为元素个数保存baseCount中,部分元素的变化个数保存在CounterCell数组中,实现如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
public int size() {
    long n = sumCount();
    return ((n < 0L) ? 0 :
            (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
            (int)n);
}
 
final long sumCount() {
    CounterCell[] as = counterCells; CounterCell a;
    long sum = baseCount;
    if (as != null) {
        for (int i = 0; i < as.length; ++i) {
            if ((a = as[i]) != null)
                sum += a.value;
        }
    }
    return sum;
}

通过累加baseCountCounterCell数组中的数量,即可得到元素的总个数;

ConcurrentHashMap1.7和1.8的不同实现的更多相关文章

  1. 深入浅出ConcurrentHashMap1.8

    转载:https://www.jianshu.com/p/c0642afe03e0 好文 关于文章中的疑问:为什么要构造一个反序链表,放在nextTable的i+n的位置上呢,在<深入分析Con ...

  2. 深入浅出ConcurrentHashMap1.8+CAS+volatile

    1.深入浅出CAS 前言 CAS(Compare and Swap),即比较并替换,实现并发算法时常用到的一种技术,Doug lea大神在java同步器中大量使用了CAS技术,鬼斧神工的实现了多线程执 ...

  3. 学习ConcurrentHashMap1.7分段锁原理

    1. 概述 接上一篇 学习 ConcurrentHashMap1.8 并发写机制, 本文主要学习 Segment分段锁 的实现原理. 虽然 JDK1.7 在生产环境已逐渐被 JDK1.8 替代,然而一 ...

  4. ConcurrentHashMap1.8源码分析

    文章简介 想必大家对HashMap数据结构并不陌生,JDK1.7采用的是数组+链表的方式,JDK1.8采用的是数组+链表+红黑树的方式.虽然JDK1.8对于HashMap有了很大的改进,提高了存取效率 ...

  5. ConcurrentHashMap1.8源码解析

    深入并发包 ConcurrentHashMap 概述 JDK1.8的实现已经摒弃了Segment的概念,而是直接用Node数组+链表+红黑树的数据结构来实现,并发控制使用Synchronized和CA ...

  6. 谈谈ConcurrentHashMap1.7和1.8的不同实现

    知止而后有定,定而后能静,静而后能安,安而后能虑,虑而后能得. ConcurrentHashMap 在多线程环境下,使用HashMap进行put操作时存在丢失数据的情况,为了避免这种bug的隐患,强烈 ...

  7. 理解ConcurrentHashMap1.8源码

    ConcurrentHashMap源码分析 其实ConcurrentHashMap我自己已经看过很多遍了,但是今天在面试阿里的时候自己在描述ConcurrentHashMap发现自己根本讲不清楚什么是 ...

  8. ConcurrentHashMap1.7源码分析

    参考:https://www.cnblogs.com/liuyun1995/p/8631264.html HashMap不是线程安全的,其所有的方法都未同步,虽然可以使用Collections的syn ...

  9. ConcurrentHashMap1.7和1.8的源码分析比较

    ConcurrentHashMap 在多线程环境下,使用HashMap进行put操作时存在丢失数据的情况,为了避免这种bug的隐患,强烈建议使用ConcurrentHashMap代替HashMap,为 ...

随机推荐

  1. 阿里云API网关(13)请求身份识别:客户端请求签名和服务网关请求签名

    网关指南: https://help.aliyun.com/document_detail/29487.html?spm=5176.doc48835.6.550.23Oqbl 网关控制台: https ...

  2. YML(1)什么是 YML

    YAML(IPA: /ˈjæməl/,尾音类似camel骆驼) YAML 是一个可读性高,用来表达资料序列的编程语言. YAML参考了其他多种语言,包括:XML.C语言.Python.Perl以及电子 ...

  3. 基于JWT标准的用户认证接口实现

    前面的话 实现用户登录认证的方式常见的有两种:一种是基于 cookie 的认证,另外一种是基于 token 的认证 .本文以基于cookie的认证为参照,详细介绍JWT标准,并实现基于该标签的用户认证 ...

  4. JS银行取款流程

     假设一个简单的ATM机的取款过程是这样的:首先提示用户输入密码(password),最多只能输入三次,超过3次则提示用户"密码错误,请取卡"结束交易.如果用户密码正确,再提示用户 ...

  5. Java-NIO(四):通道(Channel)的原理与获取

    通道(Channel): 由java.nio.channels包定义的,Channel表示IO源与目标打开的连接,Channel类似于传统的“流”,只不过Channel本身不能直接访问数据,Chann ...

  6. [转]scrapy中的logging

    logging模块是Python提供的自己的程序日志记录模块. 在大型软件使用过程中,出现的错误有时候很难进行重现,因此需要通过分析日志来确认错误位置,这也是写程序时要使用日志的最重要的原因. scr ...

  7. C++ namespace的作用

    namespace:命名空间或者叫名字空间,传统的c++只有一个全局的namespace,但是由于现在的程序规模越来越大,程序的分工越来越细,全局作用域就变得越来越拥挤,每个人都可能使用相同的名字来实 ...

  8. spring加载xml的六种方式

    因为目前正在从事一个项目,项目中一个需求就是所有的功能都是插件的形式装入系统,这就需要利用Spring去动态加载某一位置下的配置文件,所以就总结了下Spring中加载xml配置文件的方式,我总结的有6 ...

  9. 设计APP时我们该怎么做

    不得不承认,手机APP已经渗透到我们的生活中,根据数据统计,人们每天平均有3.9个小时是花费在手机APP的使用上的,可以预见,手机APP正在改变我们的生活.手机APP受到人们的欢迎,很多商家也看到了其 ...

  10. jq跨域获取json

    <!DOCTYPE html><html lang="zh"> <head> <meta charset="UTF-8" ...