Description

题库链接( bzoj 权限题,可以去 cogs 交♂ 题库链接2

求含有 \(n\) 个点有标号的简单无向联通图的个数。方案数对 \(1004535809(479\times 2^{21}+1)\) 取模。

\(n\leq 130000\)

Solution

似乎直接算答案比较麻烦。不过似乎一个相似的东西比较容易算,我们记 \(n\) 个点有标号的简单无向图的个数为 \(g(n)\) 。(相较要求的东西而言,少了约束:即不要求联通)。

这个比较好算了,因为简单无向图一共有 \(n\choose 2\) 条边。故答案就是 \(g(n)=2^{n\choose 2}\) 。

考虑 \(g\) 和答案间有什么关系。

不妨记答案为 \(f(n)\) ,我们枚举这个图中的 \(1\) 号点所在的联通块的大小,容易得到:

\[g(n)=\sum_{i=1}^n{n-1\choose i-1}f(i)g(n-i)\]

这个式子一定是成立的,因为它不重不漏地考虑了所有的情况。这是因为 \(1\) 号点所在的联通块大小不同,导致计数一定不重复;并且考虑到了所有情况。

我们试着把他变得好看一点,等号两边同除以 \((n-1)!\) ,那么

\[\frac{g(n)}{(n-1)!}=\sum_{i=1}^n\frac{f(i)}{(i-1)!}\times\frac{g(n-i)}{(n-i)!}\]

观察右边这个式子,我们考虑生成函数,让

\[\begin{aligned}C(x)&=\sum_{i=1}^\infty\frac{g(i)}{(i-1)!}x^i\\F(x)&=\sum_{i=1}^\infty\frac{f(i)}{(i-1)!}x^i\\G(x)&=\sum_{i=0}^\infty\frac{g(i)}{i!}x^i\end{aligned}\]

容易发现

\[\begin{equation}C(x)=F(x)G(x)\end{equation}\]

把 \(g(n)=2^{n\choose 2}\) 带入,其实 \(C(x),G(x)\) 的系数都是已知的,如果解出 \(F(n)\) 就能够得到 \(f(n)\) ,也就是答案。考虑如何解 \(F(x)\) 。

把 \((1)\) 式放在 \(\mod x^{n+1}\) 意义下

\[\begin{aligned}C(x)&\equiv F(x)G(x)&\pmod{x^{n+1}}\\F(x)&\equiv C(x)G^{-1}(x)&\pmod{x^{n+1}}\end{aligned}\]

这样,求出多项式 \(G(x)\) 的逆之后与 \(C(x)\) 做一遍卷积,即可得到 \(F(x)\) 。

取出 \(F(n)\) 乘上 \((n-1)!\) 即可得到 \(f(n)\) ,也就是答案。

Code

#include <bits/stdc++.h>
using namespace std;
const int N = 130000*4;
const int yzh = 1004535809; int n, C[N+5], G[N+5], invG[N+5], GN[N+5];
int g[N+5], inv[N+5], L, R[N+5], len, tmp[N+5]; int quick_pow(int a, int b) {
int ans = 1;
while (b) {
if (b&1) ans = 1ll*ans*a%yzh;
b >>= 1, a = 1ll*a*a%yzh;
}
return ans;
}
int C2(int n) {return 1ll*n*(n-1)/2%(yzh-1); }
void NTT(int *A, int o) {
for (int i = 0; i < len; i++) if (i < R[i]) swap(A[i], A[R[i]]);
for (int i = 1; i < len; i <<= 1) {
int gn = GN[i], x, y;
if (o == -1) gn = quick_pow(gn, yzh-2);
for (int j = 0; j < len; j += (i<<1)) {
int g = 1;
for (int k = 0; k < i; k++, g = 1ll*g*gn%yzh) {
x = A[j+k], y = 1ll*g*A[j+k+i]%yzh;
A[j+k] = (x+y)%yzh, A[j+k+i] = (x-y+yzh)%yzh;
}
}
}
}
void poly_inv(int *A, int *B, int deg) {
if (deg == 1) {B[0] = quick_pow(A[0], yzh-2); return; }
poly_inv(A, B, (deg+1)>>1);
for (L = 0, len = 1; len <= (deg<<1); len <<= 1) ++L;
for (int i = 0; i < len; i++) R[i] = (R[i>>1]>>1)|((i&1)<<(L-1));
for (int i = 0; i < deg; i++) tmp[i] = A[i];
for (int i = deg; i < len; i++) tmp[i] = 0;
for (int i = (deg+1)>>1; i < len; i++) B[i] = 0;
NTT(tmp, 1), NTT(B, 1);
for (int i = 0; i < len; i++)
B[i] = 1ll*B[i]*(((2ll-1ll*tmp[i]*B[i]%yzh)+yzh)%yzh)%yzh;
NTT(B, -1); int inv = quick_pow(len, yzh-2);
for (int i = 0; i < len; i++) B[i] = 1ll*B[i]*inv%yzh;
}
void work() {
scanf("%d", &n); g[0] = inv[0] = inv[1] = 1;
for (int i = 1; i <= N; i <<= 1) GN[i] = quick_pow(3, (yzh-1)/(i<<1));
for (int i = 2; i <= n; i++) inv[i] = 1ll*(yzh-yzh/i)*inv[yzh%i]%yzh;
for (int i = 1; i <= n; i++) inv[i] = 1ll*inv[i]*inv[i-1]%yzh;
for (int i = 1, lim = 1; i <= n; i++, lim = 1ll*lim*2%yzh)
g[i] = 1ll*g[i-1]*lim%yzh;
for (int i = 0; i <= n; i++) G[i] = 1ll*g[i]*inv[i]%yzh;
for (int i = 1; i <= n; i++) C[i] = 1ll*g[i]*inv[i-1]%yzh;
poly_inv(G, invG, n+1);
for (L = 0, len = 1; len <= (n<<1); len <<= 1) ++L;
for (int i = 0; i < len; i++) R[i] = (R[i>>1]>>1)|((i&1)<<(L-1));
NTT(C, 1), NTT(invG, 1);
for (int i = 0; i < len; i++) C[i] = 1ll*C[i]*invG[i]%yzh;
NTT(C, -1); int inv = quick_pow(len, yzh-2);
for (int i = 0; i < len; i++) C[i] = 1ll*C[i]*inv%yzh;
int ans = C[n];
for (int i = 1; i < n; i++) ans = 1ll*ans*i%yzh;
printf("%d\n", ans);
}
int main() {work(); return 0; }

[BZOJ 3456]城市规划的更多相关文章

  1. [BZOJ 3456]城市规划(cdq分治+FFT)

    [BZOJ 3456]城市规划(cdq分治+FFT) 题面 求有标号n个点无向连通图数目. 分析 设\(f(i)\)表示\(i\)个点组成的无向连通图数量,\(g(i)\)表示\(i\)个点的图的数量 ...

  2. BZOJ 3456: 城市规划 [多项式求逆元 组合数学 | 生成函数 多项式求ln]

    3456: 城市规划 题意:n个点组成的无向连通图个数 以前做过,今天复习一下 令\(f[n]\)为n个点的无向连通图个数 n个点的完全图个数为\(2^{\binom{n}{2}}\) 和Bell数的 ...

  3. BZOJ 3456: 城市规划 与 多项式求逆算法介绍(多项式求逆, dp)

    题面 求有 \(n\) 个点的无向有标号连通图个数 . \((1 \le n \le 1.3 * 10^5)\) 题解 首先考虑 dp ... 直接算可行的方案数 , 容易算重复 . 我们用总方案数减 ...

  4. bzoj 3456 城市规划——分治FFT / 多项式求逆 / 多项式求ln

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3456 分治FFT: 设 dp[ i ] 表示 i 个点时连通的方案数. 考虑算补集:连通的方 ...

  5. bzoj 3456 城市规划 多项式求逆+分治FFT

    城市规划 Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 1091  Solved: 629[Submit][Status][Discuss] Desc ...

  6. bzoj 3456 城市规划 —— 分治FFT / 多项式求逆 / 指数型生成函数(多项式求ln)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3456 首先考虑DP做法,正难则反,考虑所有情况减去不连通的情况: 而不连通的情况就是那个经典 ...

  7. BZOJ 3456 城市规划 ( NTT + 多项式求逆 )

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=3456 题意: 求出\(n\)个点的简单(无重边无自环)无向连通图的个数.(\(n< ...

  8. BZOJ 3456 城市规划 (组合计数、DP、FFT)

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=3456 著名的多项式练习题,做法也很多,终于切掉了纪念 首先求一波递推式: 令\(F(n ...

  9. BZOJ 3456: 城市规划 [多项式求逆元 DP]

    题意: 求出n个点的简单(无重边无自环)无向连通图数目.方案数mod 1004535809(479 * 2 ^ 21 + 1)即可. n<=130000 DP求方案 g(n) n个点所有图的方案 ...

随机推荐

  1. C语言数据类型作业

    一.PTA实验作业 题目1:7-4 打印菱形图案 1. 本题PTA提交列表 2. 设计思路 1.定义m,n(用于计算空格数,输出"* "数),i,j,k(用于循环) 2.输入n,并 ...

  2. sql with as 用法-Z

    以下内容转自:http:.com/ 一.WITH AS的含义 WITH AS短语,也叫做子查询部分(subquery factoring),可以让你做很多事情,定义一个SQL片断,该SQL片断会被整个 ...

  3. 201621123060《JAVA程序设计》第二周学习总结

    1.本周学习总结 本周学习了JAVA中的引用类.包装类(学习了一种语法:自动装箱)和数组(遍历数组的新方法foreach循环). 2. 书面作业 1.String-使用Eclipse关联jdk源代码 ...

  4. 算法——算法时间复杂度的计算和大O阶的推导

    在算法分析中,我们将语句总的执行次数记为T(n)进而分析T(n)随n的变化情况确认T(n)的数量级.一般情况下,T(n)随n增大变化最缓慢的算法为最优算法. 根据定义,T(n)的求法是很简单的,也就是 ...

  5. 2018上C语言程序设计(高级)作业- 第2次作业

    作业要求一 提交截图: 6-7: 6-8: 6-9: 7-1: 作业要求二 题目6-7删除字符中数字字符 1.设计思路: (1)第一步:本题要求是删除字符中的数字字符,我的主要思路是通过数组遍历若遇到 ...

  6. openfalcon

    一.环境准备 操作系统:centos7(minimal,www.centos.org下载的包是CentOS-7-x86_64-Minimal-1611.iso) 1.1 更换阿里yum(个人习惯) 步 ...

  7. 使用 VSCode 编写 .NET Core 项目之初体验

    注:本文在根据 微软官方文档指导下,根据自己的学习中整理,并不完全照搬文档,但也大体和文档学习路线相似,主要为记录学习过程. 官方学习地址: https://code.visualstudio.com ...

  8. python之路--day15---软件开发目录规范

    软件开发目录规范 bin--启动文件 conf--配置文件 core--核心代码 db--数据文件 lib--常用功能代码 log--日志文件 readme--软件介绍

  9. DSkin 的WebUI开发模式介绍,Html快速开发Winform的UI

    新版WebUI开发模式采用MiniBlink内核,这个内核功能更完善,dll压缩之后才5M,而且提供开发者功能,内核还在更新中,而且是开源项目:https://github.com/weolar/mi ...

  10. linux下的Shell编程(8)自定义函数

    Shell Script中也可以使用自定义的函数,其语法形式如下: functionname() { - }