[ZJOI 2014]力
Description
Input
Output
n行,第i行输出Ei。与标准答案误差不超过1e-2即可。
Sample Input
4006373.885184
15375036.435759
1717456.469144
8514941.004912
1410681.345880
Sample Output
3439.793
7509018.566
4595686.886
10903040.872
题解
约掉 $q_i$ $$E_j = \sum_{i<j}\frac{q_j}{(i-j)^2 }-\sum_{i>j}\frac{q_j}{(i-j)^2 }$$
我们拿出 $A_i=\sum\limits_{i<j}\frac{q_j}{(i-j)^2 }$ 讨论。
构造第一个多项式系数依次为 $q_i,i\in[0,n)$ ,第二个多项式系数 $\begin{cases}0 &i=0\\ \frac{1}{i^2} &i\in[1,n)\end{cases}$
卷积之后第 $i$ 项就是所求的 $A_i$ 。之后的类似,对于 $A'_i=\sum\limits_{i>j}\frac{q_j}{(i-j)^2 }$ 只要把第一个多项式翻转,卷积后第 $n-1-i$ 项就是所求的 $A'_i$ 。
//It is made by Awson on 2018.1.28
#include <set>
#include <map>
#include <cmath>
#include <ctime>
#include <queue>
#include <stack>
#include <cstdio>
#include <string>
#include <vector>
#include <complex>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define dob complex<double>
#define Abs(a) ((a) < 0 ? (-(a)) : (a))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Swap(a, b) ((a) ^= (b), (b) ^= (a), (a) ^= (b))
#define writeln(x) (write(x), putchar('\n'))
#define lowbit(x) ((x)&(-(x)))
using namespace std;
const int N = *;
const double pi = acos(-1.0); int n, m, s, L, R[N+];
double q[N+], sum, ans[N+];
dob a[N+], b[N+]; void FFT(dob *A, int o) {
for (int i = ; i < n; i++) if (i > R[i]) swap(A[i], A[R[i]]);
for (int i = ; i < n; i <<= ) {
dob wn(cos(pi/i), sin(pi*o/i)), x, y;
for (int j = ; j < n; j += (i<<)) {
dob w(, );
for (int k = ; k < i; k++, w *= wn) {
x = A[j+k], y = w*A[i+j+k];
A[j+k] = x+y, A[i+j+k] = x-y;
}
}
}
}
void work() {
scanf("%d", &n); n--; s = n;
for (int i = ; i <= n; i++) scanf("%lf", &q[i]), a[i] = q[i];
for (int i = ; i <= n; i++) b[i] = ./i/i;
m = n<<; for (n = ; n <= m; n <<= ) L++;
for (int i = ; i < n; i++) R[i] = (R[i>>]>>)|((i&)<<(L-));
FFT(a, ), FFT(b, );
for (int i = ; i <= n; i++) a[i] *= b[i];
FFT(a, -);
for (int i = ; i <= s; i++) ans[i] = a[i].real()/n;
for (int i = ; i <= n; i++) a[i] = ;
for (int i = ; i <= s; i++) a[i] = q[s-i];
FFT(a, );
for (int i = ; i <= n; i++) a[i] *= b[i];
FFT(a, -);
for (int i = ; i <= s; i++) printf("%lf\n", ans[i]-a[s-i].real()/n);
}
int main() {
work();
return ;
}
[ZJOI 2014]力的更多相关文章
- 解题:ZJOI 2014 力
题面 事实说明只会FFT板子是没有用的,还要把式子推成能用FFT/转化一下卷积的方式 虽然这个题不算难的多项式卷积 稍微化简一下可以发现实际是$q_i$和$\frac{1}{(i-j)^2}$在卷,然 ...
- 【BZOJ 3527】【ZJOI 2014】力
代换一下变成多项式卷积,这里是的答案是两个卷积相减,FFT求一下两个卷积就可以啦 详细的题解:http://www.cnblogs.com/iwtwiioi/p/4126284.html #inclu ...
- 【ZJOI 2014】力
Problem Description 给出 \(n\) 个数 \(q_i\),给出 \(F_j\) 的定义如下: \[F_j=\sum_{i<j} \frac{q_iq_j}{(i-j)^2} ...
- ZJOI 2014 星系调查(推导)
题意 https://loj.ac/problem/2201 思路 说白了就是一条路径上有 \(n\) 个二维坐标,求一条直线使得所有点到此直线的距离和最小. 设这条直线为 \(y=kx+b\) ,距 ...
- php大力力 [050节] 兄弟连高洛峰 PHP教程 2014年[数据库、PDO教程]
php大力力 [050节] 兄弟连高洛峰 PHP教程 2014年[数据库.PDO教程] 第14章 数据库252.[2014]兄弟连高洛峰 PHP教程14.1.1 复习数据库[已发布,点击下载]253. ...
- php大力力 [016节] 兄弟连高洛峰php教程(2014年 14章数据库章节列表)
2015-08-25 php大力力016 兄弟连高洛峰php教程(2014年 14章数据库章节列表) [2014]兄弟连高洛峰 PHP教程14.1.1 复习数据库 15:58 [2014]兄弟连高洛 ...
- php大力力 [045节] 兄弟连高洛峰 PHP教程 2014年[已发布,点击下载]
http://www.verycd.com/topics/2843130/ 第1部分 WEB开发入门篇第1章LAMP网站构建1.[2014]兄弟连高洛峰 PHP教程1.1.1 新版视频形式介绍[已发布 ...
- BZOJ3527[ZJOI]力
无题面神题 原题意: 求所有的Ei=Fi/qi. 题解: qi被除掉了,则原式中的qj可以忽略. 用a[i]表示q[i],用b[j-i]来表示±1/((j-i)^2)(j>i时为正,j<i ...
- zjoi 力
显然fft维护卷积就可以了 发现fft里面会改变很多东西 要还原一下 #include <bits/stdc++.h> #define dob complex<double> ...
随机推荐
- python scrapy框架爬虫遇到301
1.什么是状态码301 301 Moved Permanently(永久重定向) 被请求的资源已永久移动到新位置,并且将来任何对此资源的引用都应该使用本响应返回的若干个URI之一.如果可能,拥有链接编 ...
- Beta第六天
听说
- C语言第六次博客作业--数据类型
一.PTA实验作业 题目1:区位码输入法 1. 本题PTA提交列表 2. 设计思路 (1)定义整型变量code放区位码,areacode放区码,digitcode放位码,one放个位数,two放十位数 ...
- 201621123057 《Java程序设计》第14周学习总结
1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结与数据库相关内容. 2. 使用数据库技术改造你的系统 2.1 简述如何使用数据库技术改造你的系统.要建立什么表?截图你的表设计. 答 ...
- scrapy crawl rules设置
rules = [ Rule(SgmlLinkExtractor(allow=('/u012150179/article/details'), restrict_xpaths=('//li[@clas ...
- pymysql 多字段插入
d = {'name':'alx','age':18,'pp':11,'cc':12} sql = '''insert into xx(%s) value(%s)''' key_list = [] v ...
- JQuery 动态加载iframe.
html: <iframe id="ifm" style="width:inherit;height:inherit" runat="serve ...
- 读论文系列:Object Detection ECCV2016 SSD
转载请注明作者:梦里茶 Single Shot MultiBox Detector Introduction 一句话概括:SSD就是关于类别的多尺度RPN网络 基本思路: 基础网络后接多层featur ...
- ( 转 ) CORS 有一次 OPTIONS 请求的原理
刚接触前端的时候,以为HTTP的Request Method只有GET与POST两种,后来才了解到,原来还有HEAD.PUT.DELETE.OPTIONS-- 目前的工作中,HEAD.PUT.DELE ...
- AssemblyExecuteAdapter
BizTalk custom adapter AssemblyExecuteAdapter 功能 更为方便的扩展BizTalk custom adapter 的交互方式,只需要实现IAssemblyE ...