Description

lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不能少于0的个数。现在lxhgww想要知道满足要求的字符串共有多少个,聪明的程序员们,你们能帮助他吗?

Input

输入数据是一行,包括2个数字n和m

Output

输出数据是一行,包括1个数字,表示满足要求的字符串数目,这个数可能会很大,只需输出这个数除以20100403的余数

Sample Input

2 2

Sample Output

2

HINT

【数据范围】
对于30%的数据,保证1<=m<=n<=1000
对于100%的数据,保证1<=m<=n<=1000000

题解(转载)

->原文地址<-

首先,我们设选$1$为$(1,1)$,选$0$为$(1,-1)$

目标就是$(n+m,n-m)$

总方案数为$C_{n+m}^n$,因为有$n+m$个位置,放$n$个$1$

然后要减去不合法的即线路通过$y=-1$的。将线路与$y=-1$交点的左边沿着$y=-1$做对称操作,则最后等价于从$(0,-2)$走到$(n+m,n-m)$的方案数

所以向上走$n-m+2$

则有$x-y=n-m+2$

  $x+y=n+m$

  $x=n+1,y=m-1$

所以不合法方案为$C_{n+m}^{n+1}$

$ans=C_{n+m}^n-C_{n+m}^{n+1}$

求这些用模逆元,$O(n)$求解

 //It is made by Awson on 2017.10.9
#include <set>
#include <map>
#include <cmath>
#include <ctime>
#include <cmath>
#include <stack>
#include <queue>
#include <vector>
#include <string>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define sqr(x) ((x)*(x))
using namespace std;
const int N = ;
const int MOD = ; int n, m;
int cnt[N+];
int A[N+], B[N+]; void prepare() {
A[] = B[] = A[] = B[] =;
for (int i = ; i <= N; i++)
B[i] = -(LL)(MOD/i)*B[MOD%i]%MOD;
for (int i = ; i <= N; i++)
A[i] = (LL)A[i-]*i%MOD,
B[i] = (LL)B[i-]*B[i]%MOD;
}
void work() {
scanf("%d%d", &n, &m);
prepare();
printf("%lld\n", ((LL)A[m+n]*B[m]%MOD*B[n]%MOD-(LL)A[m+n]*B[m-]%MOD*B[n+]%MOD+*MOD)%MOD);
}
int main() {
work();
return ;
}

[SCOI 2010]字符串的更多相关文章

  1. SCOI 2010 连续攻击游戏(贪心,图论)

    SCOI 2010 连续攻击游戏 solution 直接就硬刚 我愿称贪心为暴力 因为题目中要求一定从小到大贪心,那么当前点的下标有能够选取的较大点,那么它一定可以和前面的一个较小点连接,所以可以直接 ...

  2. [SCOI 2010] 股票交易

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=1855 [算法] 单调队列优化动态规划 [代码] #include<bits/s ...

  3. 【BZOJ 1857】【SCOI 2010】传送带

    三分套三分,虽然简单,但是也得掌握,,, 时间复杂度$O(log_{1.5}^2 n)$ 一开始WA好几次发现是快速读入里没有return,这样也能过样例?_(:3J∠)_ #include<c ...

  4. SCOI 2010 序列操作

    题目描述 lxhgww最近收到了一个01序列,序列里面包含了n个数,这些数要么是0,要么是1,现在对于这个序列有五种变换操作和询问操作: 0 a b 把[a, b]区间内的所有数全变成0 1 a b ...

  5. [SCOI 2010]传送带

    Description 题库链接 在一个 \(2\) 维平面上有两条传送带,每一条传送带可以看成是一条线段.两条传送带分别为线段 \(AB\) 和线段 \(CD\) .在 \(AB\) 上的移动速度为 ...

  6. 解题:SCOI 2010 序列操作

    题面 线段树......模板题(雾? 然而两种标记会互相影响,必须保证每次只放一个(不然就不知道怎么放了),具体的影响就是: 翻转标记会使得覆盖标记一起翻转,下放的时候就是各种swap 覆盖标记会抹掉 ...

  7. Scoi 2010 幸运数字

    [题目描述]在中国,很多人都把6和8视为是幸运数字!lxhgww也这样认为,于是他定义自己的“幸运号码”是十进制表示中只包含数字6和8的那些号码,比如68,666,888都是“幸运号码”!但是这种“幸 ...

  8. 【SCOI 2010】股票交易

    题目 最近 \(\text{lxhgww}\) 又迷上了投资股票,通过一段时间的观察和学习,他总结出了股票行情的一些规律. 通过一段时间的观察,\(\text{lxhgww}\) 预测到了未来 \(T ...

  9. 【SCOI 2010】传送带

    为了方便,我们不妨设$\rm P \lt Q,R$ 我们发现,有$\rm E$点在$\rm AB$上,$\rm F$点在$\rm CD$上,最优解一定是$\rm AE\rightarrow EF\ri ...

随机推荐

  1. 网络1711c语言函数作业总结

    作业地址:https://edu.cnblogs.com/campus/jmu/JMUC--NE17111712/homework/1335 总结 1.评分细则 评分注意事项 代码规范问题依旧要重视, ...

  2. 如何减小ios安装包大小

    以前的老文章了,搬到cnblog 更小的安装包意味着更快的下载安装速度,也往往意味着更快的加载运行速度,是优化ios应用的一个重要方面,本文主要参考<减小iOS应用程序的大小>,在实际测试 ...

  3. 【iOS】Swift类的继承、构造方法、析构器等复习

    一.继承与重写, 防止重写 1.1 基类, 不继承任何类. Swift不想OC或者Java中继承自Object类.定义一个类,不继承任何类,该类就是基类. [java] view plaincopy ...

  4. Hibernate之ORM与Hibernate

    ORM: ORM是 Object /Relation Mapping,对象/关系数据库映射. 目前比较流行的编程语言,如java ,c#等,它们都是面向对象的编程语言,而目前比较主流的数据库产品,如O ...

  5. Linux下关闭Tomcat残留线程

    ps -ef | grep tomcat kill -9 {pid}

  6. Oracle RAC环境下定位并杀掉最终阻塞的会话

    实验环境:Oracle RAC 11.2.0.4 (2节点) 1.模拟故障:会话被级联阻塞 2.常规方法:梳理找出最终阻塞会话 3.改进方法:立即找出最终阻塞会话 之前其实也写过一篇相关文章: 如何定 ...

  7. 格式化输出io:format的奇技淫巧

    格式化输出io:format是我接触Erlang使用的第一个库函数(io:format("Hello World")),随着学习的深入,它也是我debug优先选择最简单直接的工具. ...

  8. Mego(06) - 关系数据库建模

    框架中提供了多种数据注释以便可以全面的描述数据库结构特性. 自增列 可以使用注释声明指定列是数据库自增列,同时能指定自增的起始及步长. public class Blog { [Identity(, ...

  9. kubernetes入门(09)kubernetes1.7集群安装(2017/11/13)

    CentOS7.3利用kubeadm安装kubernetes1.7.3完整版(官方文档填坑篇) https://www.cnblogs.com/liangDream/p/7358847.html 一. ...

  10. Groovy入门(2-2)Groovy的eclipse插件安装

    1.安装eclipse插件 启动eclipse,点击help -> Install New Software... 在弹出的窗口中点击:Add... Groovy插件的地址:http://dis ...