[LeetCode] Redundant Connection II 冗余的连接之二
In this problem, a rooted tree is a directed graph such that, there is exactly one node (the root) for which all other nodes are descendants of this node, plus every node has exactly one parent, except for the root node which has no parents.
The given input is a directed graph that started as a rooted tree with N nodes (with distinct values 1, 2, ..., N), with one additional directed edge added. The added edge has two different vertices chosen from 1 to N, and was not an edge that already existed.
The resulting graph is given as a 2D-array of edges
. Each element of edges
is a pair [u, v]
that represents a directed edge connecting nodes u
and v
, where u
is a parent of child v
.
Return an edge that can be removed so that the resulting graph is a rooted tree of N nodes. If there are multiple answers, return the answer that occurs last in the given 2D-array.
Example 1:
Input: [[1,2], [1,3], [2,3]]
Output: [2,3]
Explanation: The given directed graph will be like this:
1
/ \
v v
2-->3
Example 2:
Input: [[1,2], [2,3], [3,4], [4,1], [1,5]]
Output: [4,1]
Explanation: The given directed graph will be like this:
5 <- 1 -> 2
^ |
| v
4 <- 3
Note:
- The size of the input 2D-array will be between 3 and 1000.
- Every integer represented in the 2D-array will be between 1 and N, where N is the size of the input array.
这道题是之前那道 Redundant Connection 的拓展,那道题给的是无向图,只需要删掉组成环的最后一条边即可,归根到底就是检测环就行了。而这道题给的是有向图,整个就复杂多了,因为有多种情况存在,比如给的例子1就是无环,但是有入度为2的结点3。再比如例子2就是有环,但是没有入度为2的结点。其实还有一种情况例子没有给出,就是既有环,又有入度为2的结点。好,现在就来总结一下这三种情况:
第一种:无环,但是有结点入度为2的结点(结点3)
[[1,2], [1,3], [2,3]]
/ \
v v
-->
第二种:有环,没有入度为2的结点
[[1,2], [2,3], [3,4], [4,1], [1,5]]
<- ->
^ |
| v
<-
第三种:有环,且有入度为2的结点(结点1)
[[1,2],[2,3],[3,1],[1,4]]
/
v / ^
v \
-->
对于这三种情况的处理方法各不相同,首先对于第一种情况,返回的产生入度为2的后加入的那条边 [2, 3],而对于第二种情况,返回的是刚好组成环的最后加入的那条边 [4, 1],最后对于第三种情况返回的是组成环,且组成入度为2的那条边 [3, 1]。
明白了这些,先来找入度为2的点,如果有的话,那么将当前产生入度为2的后加入的那条边标记为 second,前一条边标记为 first。然后来找环,为了方便起见,找环使用联合查找 Union Find 的方法,可参见 Redundant Connection 中的解法三。当找到了环之后,如果 first 不存在,说明是第二种情况,返回刚好组成环的最后加入的那条边。如果 first 存在,说明是第三种情况,返回 first。如果没有环存在,说明是第一种情况,返回 second,参见代码如下:
class Solution {
public:
vector<int> findRedundantDirectedConnection(vector<vector<int>>& edges) {
int n = edges.size();
vector<int> root(n + , ), first, second;
for (auto& edge : edges) {
if (root[edge[]] == ) {
root[edge[]] = edge[];
} else {
first = {root[edge[]], edge[]};
second = edge;
edge[] = ;
}
}
for (int i = ; i <= n; ++i) root[i] = i;
for (auto& edge : edges) {
if (edge[] == ) continue;
int x = getRoot(root, edge[]), y = getRoot(root, edge[]);
if (x == y) return first.empty() ? edge : first;
root[x] = y;
}
return second;
}
int getRoot(vector<int>& root, int i) {
return i == root[i] ? i : getRoot(root, root[i]);
}
};
讨论:使用联合查找 Union Find 的方法一般都需要写个子函数,来查找祖宗结点,上面的解法 getRoot() 函数就是这个子函数,使用递归的形式来写的,其实还可以用迭代的方式来写,下面这两种写法都可以:
int getRoot(vector<int>& root, int i) {
while (i != root[i]) {
root[i] = root[root[i]];
i = root[i];
}
return i;
}
int getRoot(vector<int>& root, int i) {
while (i != root[i]) i = root[i];
return i;
}
Github 同步地址:
https://github.com/grandyang/leetcode/issues/685
类似题目:
Number of Connected Components in an Undirected Graph
参考资料:
https://leetcode.com/problems/redundant-connection-ii/
LeetCode All in One 题目讲解汇总(持续更新中...)
[LeetCode] Redundant Connection II 冗余的连接之二的更多相关文章
- [LeetCode] 685. Redundant Connection II 冗余的连接之二
In this problem, a rooted tree is a directed graph such that, there is exactly one node (the root) f ...
- [LeetCode] 685. Redundant Connection II 冗余的连接之 II
In this problem, a rooted tree is a directed graph such that, there is exactly one node (the root) f ...
- [LeetCode] Redundant Connection 冗余的连接
In this problem, a tree is an undirected graph that is connected and has no cycles. The given input ...
- LeetCode 685. Redundant Connection II
原题链接在这里:https://leetcode.com/problems/redundant-connection-ii/ 题目: In this problem, a rooted tree is ...
- [Swift]LeetCode685. 冗余连接 II | Redundant Connection II
In this problem, a rooted tree is a directed graph such that, there is exactly one node (the root) f ...
- [LeetCode] Palindrome Permutation II 回文全排列之二
Given a string s, return all the palindromic permutations (without duplicates) of it. Return an empt ...
- [LeetCode] Arithmetic Slices II - Subsequence 算数切片之二 - 子序列
A sequence of numbers is called arithmetic if it consists of at least three elements and if the diff ...
- [LeetCode] Contains Duplicate II 包含重复值之二
Given an array of integers and an integer k, return true if and only if there are two distinct indic ...
- [LeetCode] Single Number II 单独的数字之二
Given an array of integers, every element appears three times except for one. Find that single one. ...
随机推荐
- Matlab绘图基础——绘制三维表面
%绘制三维表面 ------------------------------------- %1.绘制线框图:mesh:每一条曲线称为mesh line %首先利用meshgrid函数产生平面区域内的 ...
- 第二届强网杯-simplecheck
这次强网杯第一天做的还凑合,但第二天有事就没时间做了(也是因为太菜做不动),这里就记录一下一道简单re-simplecheck(一血). 0x00 大致思路: 用jadx.gui打开zip可以看到,通 ...
- swift textview禁止用户使用复制粘贴
//自定义一个TextView class Own_TextView: UITextView { override func caretRect(for position: UITextPositio ...
- JavaScript(第三十二天)【Ajax】
2005年Jesse James Garrett发表了一篇文章,标题为:"Ajax:A new Approach to Web Applications".他在这篇文章里介绍了一种 ...
- 2017-2018-1 Java演绎法 第二周 作业
团队任务:讨论Android上的游戏软件 参考现代软件工程 第一章 [概论]练习与讨论: 软件有很多种,也有各种分类办法,本次团队任务是讨论选取Android上的一个游戏软件,考虑到每位组员接触的游戏 ...
- 2017-2018-1 20155201 《信息安全系统设计基础》 pwd命令的实现
2017-2018-1 20155201 <信息安全系统设计基础> pwd命令的实现 一.对pwd命令的学习 在终端中输入man pwd查看手册中对pwd这一命令的解释: 以绝对路径的方式 ...
- Beta冲刺第六天
一.昨天的困难 没有困难. 二.今天进度 1.林洋洋:更新申请ip为域名,去除druid数据源统计 2.黄腾达:协作详情中添加成员对话框优化 3.张合胜:修复侧栏菜单mini状态下不能显示问题 三.明 ...
- 团队作业7——第二次项目冲刺(Beta版本)
Deadline: 2017-12-10 23:00PM,以博客发表日期为准. 评分基准: 按时交 - 有分,检查的项目包括后文的三个方面 冲刺计划安排(单独1篇博客) 七天的敏捷冲刺(每两天发布 ...
- C语言——第六周作业
题目 题目一:高速公路超速处罚 1.实验代码 #include <stdio.h> int main() { int speed,maxspeed; double x; scanf(&qu ...
- Flask 扩展 表单
pip install flask-wtf 一个简单的表单 from flask_wtf import Form from wtforms import StringField from wtform ...